forward-looking statements

This presentation contains certain forward-looking statements with respect to the business of Novocure and certain of its plans and objectives, including with respect to the development and commercialization of its lead product candidate, Optune, for a number of oncology indications. These forward-looking statements can be identified in this presentation by the fact that they do not relate only to historical or current facts. Forward-looking statements often use words "expect", "intend", "anticipate", "plan", "may", "should", "would", "could" or other words of similar meaning. These statements are based on assumptions and assessments made by Novocure in light of industry experience and perception of historical trends, current conditions, expected future developments and other appropriate factors. By their nature, forward-looking statements involve risk and uncertainty, and Novocure’s performance and financial results could differ materially from those expressed or implied in these forward-looking statements due to general financial, economic, regulatory and political conditions as well as more specific risks and uncertainties facing Novocure such as those set forth in its Annual Report on Form 10-K filed on February 28, 2019, or in subsequent quarterly filings with the U.S. Securities and Exchange Commission. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in this presentation. Novocure assumes no obligation to update or correct the information contained in this presentation, whether as a result of new information, future events or otherwise, except to the extent legally required.

The statements contained in this presentation are made as at the date of this presentation, unless some other time is specified in relation to them, and service of this presentation shall not give rise to any implication that there has been no change in the facts set out in this presentation since such date. Nothing contained in this presentation shall be deemed to be a forecast, projection or estimate of the future financial performance of Novocure, except where expressly stated.

As of the date of this presentation, Optune is only FDA-approved for the treatment of adults with supratentorial glioblastoma, or GBM, and its approval for other indications is not certain. Novocure can provide no assurances regarding market acceptance of Optune or its successful commercialization, and can provide no assurances regarding the company’s results of operations or financial condition in the future. This presentation is for informational purposes only and may not be relied upon in connection with the purchase or sale of any security.
a global oncology company with a proprietary platform

<table>
<thead>
<tr>
<th>140+</th>
<th>issued patents globally</th>
<th>140+</th>
</tr>
</thead>
<tbody>
<tr>
<td>$269M</td>
<td>trailing 12 months net revenues</td>
<td>140+</td>
</tr>
<tr>
<td>5</td>
<td>indications in late-stage pipeline</td>
<td>140+</td>
</tr>
<tr>
<td>2</td>
<td>fda-approved indications</td>
<td>140+</td>
</tr>
<tr>
<td>41%</td>
<td>revenue growth q1 2019 vs. q1 2018</td>
<td>140+</td>
</tr>
<tr>
<td>$257M</td>
<td>cash on hand as of march 31, 2019</td>
<td>140+</td>
</tr>
</tbody>
</table>
Q1 2019 ACCOMPLISHMENTS

- More than 2,600 active patients on Optune as of March 31, 2019
- $73.3 million in net revenues, 41% growth versus q1 2018
- INNOVATE-3 open and enrolling, our fourth ongoing phase 3 pivotal trial

ANTICIPATED 2019 CATALYSTS

- CMS decision regarding coverage request for newly diagnosed GBM
- HDE approval for malignant pleural mesothelioma from FDA
- Potential launch of Optune in China
- Positive cash flow from operations
we can leverage physics to fight cancer

AN ELECTRIC FIELD EXERTS FORCES ON CHARGED OBJECTS

TUMOR TREATING FIELDS USES ELECTRIC FIELDS TO DISRUPT CELL DIVISION

MISALIGNED TUBULINS INTERFERE WITH FORMATION OF MITOTIC SPINDLE

ALTERNATING ELECTRIC FIELDS DISRUPT CANCER CELL DIVISION

CANCER CELL DEATH

TUMOR TREATING FIELDS DESCRIBES ELECTRIC FIELDS THAT ALTERNATE 100,000 TO 300,000 TIMES PER SECOND TO TARGET CANCER CELLS
mitotic spindle disruption has been observed in every cancer cell line tested

CONTROL

TUMOR TREATING FIELDS

Blue staining is DAPI, highlighting DNA. Red staining is for PH3, highlighting DNA binding proteins. Green staining is for tubulin, highlighting the mitotic spindle. Novocure data on file.
the Optune® delivery system

TRANSUDER ARRAYS
Sterile, single-use transducer arrays replaced at least two times per week

ELECTRIC FIELD GENERATOR
Wearable and portable field generator weighing 2.7 pounds
proven to provide long-term quality survival to patients with newly diagnosed GBM
more time on Optune predicted increased significant survival benefit in GBM

86% of patients received a survival benefit from Optune because they used it more than half the time (n=388/450)

Median OS by percentage of monthly time on Optune*

- **Optune + TMZ**
 - 90%-100% (n=43): 25 months, P<0.05
 - 70%-90% (n=257): 22 months, P<0.05
 - 60%-70% (n=46): 20 months, P<0.05
 - 50%-60% (n=42): 18 months, P<0.05
 - 0% (n=229): 16 months

- **TMZ alone**
 - 22-24 hours/day
 - 17-22 hours/day
 - 14-17 hours/day
 - 12-14 hours/day
 - 0% (n=229): 16 months

TMZ, temozolomide

* Based on amount of time Optune was turned on and providing therapy over the course of a month.

** This data reflects the average patient usage of Optune for the first 6 months of treatment (months 1-6).

† Approximation, based on monthly usage.

‡ vs TMZ alone.

higher doses of therapy improved survival
established international presence

- **UNITED STATES**: 1,778 active patients at period end
- **EMEA**: 735 active patients at period end
- **JAPAN**: 118 active patients at period end

License agreement: CHINA (zai-lab) September 2018

Information above as of March 31, 2019.
continued growth in newly diagnosed GBM
record quarterly revenue of $73.3 million

global net revenues (USD in thousands)

>2,600
ACTIVE PATIENTS
AS OF MARCH 31, 2018

41%
REVENUE GROWTH
Q1 2019 VS. Q1 2018
pipeline in a product with single mechanism of action

<table>
<thead>
<tr>
<th>CANCERS OF THE CENTRAL NERVOUS SYSTEM</th>
<th>PRE-CLINICAL EVIDENCE</th>
<th>FIRST IN HUMAN EVIDENCE</th>
<th>CLINICAL EVIDENCE</th>
<th>FDA APPROVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glioblastoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain metastases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ependymoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gliosarcoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medulloblastoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meningioma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glioblastoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain metastases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ependymoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gliosarcoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medulloblastoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meningioma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANCERS OF THE CHEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesothelioma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small cell lung cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervical cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal cell adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary transitional cell carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANCERS OF THE ABDOMEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervical cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal cell adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary transitional cell carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignant melanoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
with drumbeat of clinical and regulatory milestones
glioblastoma represents tip of the iceberg

potential to significantly expand total addressable market

- 5,000 cases diagnosed annually in the U.S.
- Glioblastoma (GBM)
- Mesothelioma (MPM)
- Brain metastases from non-small cell lung cancer
- Non-small cell lung cancer
- Pancreatic cancer
- Ovarian cancer

patientforward
Cash flow from glioblastoma is funding increased investments in research and development.

<table>
<thead>
<tr>
<th>U.S. DOLLARS IN THOUSANDS</th>
<th>Q1 2019</th>
<th>Q1 2018</th>
<th>% GROWTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net revenues</td>
<td>$73,309</td>
<td>$52,125</td>
<td>41%</td>
</tr>
<tr>
<td>Cost of revenues</td>
<td>19,814</td>
<td>18,238</td>
<td>9%</td>
</tr>
<tr>
<td>Gross profit</td>
<td>53,495</td>
<td>33,887</td>
<td>58%</td>
</tr>
<tr>
<td>Research, development and clinical trials</td>
<td>17,042</td>
<td>11,104</td>
<td>53%</td>
</tr>
<tr>
<td>Sales and marketing</td>
<td>22,333</td>
<td>18,135</td>
<td>23%</td>
</tr>
<tr>
<td>General and administrative</td>
<td>20,238</td>
<td>17,325</td>
<td>17%</td>
</tr>
<tr>
<td>Total operating costs and expenses</td>
<td>59,613</td>
<td>46,564</td>
<td>28%</td>
</tr>
<tr>
<td>Operating income (loss)</td>
<td>(6,118)</td>
<td>(12,677)</td>
<td>52%</td>
</tr>
<tr>
<td>Financial expenses, net</td>
<td>2,371</td>
<td>4,853</td>
<td>-49%</td>
</tr>
<tr>
<td>Income (loss) before income taxes</td>
<td>(8,489)</td>
<td>(17,530)</td>
<td>52%</td>
</tr>
<tr>
<td>Income taxes</td>
<td>3,661</td>
<td>3,194</td>
<td>15%</td>
</tr>
<tr>
<td>Net income (loss)</td>
<td>$ (12,150)</td>
<td>$ (20,724)</td>
<td>41%</td>
</tr>
<tr>
<td>Net cash used in operating activities</td>
<td>$ (4,315)</td>
<td>$ (16,824)</td>
<td>-73%</td>
</tr>
</tbody>
</table>
robust intellectual property portfolio

INTELLECTUAL PROPERTY
- As of March 31, 2019 over 140 issued patents globally with expected expiration dates as late as 2037
- Numerous patents pending worldwide

LAYERED PATENT STRATEGY
- Hold fundamental IP for the use of alternating electric fields in oncology
- Platform technology, tools and multiple applications covered, including mechanism of action, use of alternating electric fields in combination with chemotherapy and delivery of alternating electric fields through transducer arrays
- Continue to file patent applications globally as we enhance our technology and applications

PMA APPROVAL PATHWAY
- Optune® classified as class III, life-sustaining device requiring PMA or HDE approval
- Anticipate any competitor device would require clinical trials
Novocure is working to...

- **Drive** Optune adoption
- **Advance** our pipeline
- **Invest** in our people and culture
- **Create** shareholder value

...extend survival in some of the most aggressive forms of cancer
Optune® indications for use and important safety information for GBM

INDICATIONS
• Optune is intended as a treatment for adult patients (22 years of age or older) with histologically-confirmed glioblastoma multiforme (GBM).
• Optune with temozolomide is indicated for the treatment of adult patients with newly diagnosed, supratentorial glioblastoma following maximal debulking surgery, and completion of radiation therapy together with concomitant standard of care chemotherapy.
• For the treatment of recurrent GBM, Optune is indicated following histologically- or radiologically-confirmed recurrence in the supratentorial region of the brain after receiving chemotherapy. The device is intended to be used as a monotherapy, and is intended as an alternative to standard medical therapy for GBM after surgical and radiation options have been exhausted.

CONTRAINDICATIONS
• Do not use Optune in patients with an active implanted medical device, a skull defect (such as, missing bone with no replacement), or bullet fragments. Use of Optune together with implanted electronic devices has not been tested and may theoretically lead to malfunctioning of the implanted device. Use of Optune together with skull defects or bullet fragments has not been tested and may possibly lead to tissue damage or render Optune ineffective.
• Do not use Optune in patients that are known to be sensitive to conductive hydrogels. In this case, skin contact with the gel used with Optune may commonly cause increased redness and itching, and rarely may even lead to severe allergic reactions such as shock and respiratory failure.
Optune® indications for use and important safety information for GBM

WARNINGS AND PRECAUTIONS

• Optune can only be prescribed by a healthcare provider that has completed the required certification training provided by Novocure (the device manufacturer).

• Do not prescribe Optune for patients that are pregnant, you think might be pregnant or are trying to get pregnant, as the safety and effectiveness of Optune in these populations have not been established.

• The most common (≥10%) adverse events involving Optune in combination with temozolomide were thrombocytopenia, nausea, constipation, vomiting, fatigue, medical device site reaction, headache, convulsions, and depression.

• The most common (≥10%) adverse events seen with Optune monotherapy were medical device site reaction and headache.

• The following adverse reactions were considered related to Optune when used as monotherapy: medical device site reaction, headache, malaise, muscle twitching, fall and skin ulcer.

• Use of Optune in patients with an inactive implanted medical device in the brain has not been studied for safety and effectiveness, and use of Optune in these patients could lead to tissue damage or lower the chance of Optune being effective.

• If the patient has an underlying serious skin condition on the scalp, evaluate whether this may prevent or temporarily interfere with Optune treatment.
clinical appendix
two additional randomized trials in GBM planned

1. Trial to study potential benefit of initiating Optune with radiation therapy
 • Intended to support possible label expansion

2. Trial to study potential efficacy signals when Optune is combined with multiple agents
 • Intended to identify optimal combination treatments

current indication for newly diagnosed GBM
- maximal debulking surgery
- completion of radiation therapy
- Optune with temozolomide
- Optune with radiation therapy
- randomized

randomized

Optune with temozolomide plus other therapies
Tumor Treating Fields is frequency-tuned to cell size to maximize effects on mitosis

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Frequency (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal intestine</td>
<td>~50 kHz</td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>150 kHz</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td>150 kHz</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>200 kHz</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>200 kHz</td>
</tr>
</tbody>
</table>

EFFECTS ON CELLS ARE FREQUENCY SPECIFIC AND INVERSELY RELATED TO CELL SIZE
transducer array placement outside of the head

- **abdominal array placement**
- **torso array placement**
- **pelvic array placement**
completed pilot STELLAR trial in mesothelioma

A pilot, non-randomized, open-label study of Tumor Treating Fields (150 kHz) concomitant with pemetrexed and cisplatin or carboplatin for malignant pleural mesothelioma

- 80 patients with inoperable previously untreated malignant pleural mesothelioma
- Data presented at the 19th World Conference on Lung Cancer in Toronto on September 25, 2018
- HDE application submitted to the FDA in October 2018

Efficacy Endpoints

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>7.6 months</td>
</tr>
<tr>
<td>Median OS</td>
<td>18.2 months</td>
</tr>
</tbody>
</table>

TTFIELDS WITH PEMETREXED AND CISPLATIN OR CARBOPLATIN

STELLAR study design & patient characteristics

Unresectable malignant pleural mesothelioma
N=80

The sample size provides 80% power (α, 0.05) to detect an increase in median OS of 5.5 months vs historical data1 (i.e. mOS of 17.6 mo, HR of 0.67)

Key Inclusion Criteria:
• Pathological evidence of unresectable MPM
• At least one measurable lesion (mRECIST)
• ECOG PS score 0-1

Key Exclusion Criteria:
• Candidate for curative treatment
• Significant comorbidities
• Implanted electronic medical devices

Primary Endpoint: OS
Secondary Endpoints: ORR, PFS, Safety

Pemetrexed IV, 500 mg/m² day 1
Cisplatin 75 mg/m² day 1
Carboplatin AUC 5 day 1 q3w up to 6 cycles

TTFields cycles:
Median (range): 8.0 (2–41)
Chemotherapy cycles:
Median (range): 6.0 (1–7)
Carboplatin: 50 patients (63%)

Median age, years (range) 67 (27–78)
Epithelioid histology 53 (66%)
Male 67 (84%)
Sarcomatoid/Biphasic 21 (26%)
ECOG PS 0 45 (56%)
Unspecified histology 6 (8%)

TTFields (150kHz, ≥ 18 h/day) + Pemetrexed/Cisplatin or Pemetrexed/Carboplatin x 6
TTFields alone until Disease Progression
Follow-up for survival

Follow-up q3w
CT scan q6w: Modified RECIST

STELLAR efficacy results: primary endpoint met

<table>
<thead>
<tr>
<th>Metric</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS (all pts)</td>
<td>18.2 months (95% CI 12.1-25.8)</td>
</tr>
<tr>
<td>1-year OS (all pts)</td>
<td>62.2% (95% CI 50.3%–72.0%)</td>
</tr>
<tr>
<td>Median OS (epithelioid pts only)</td>
<td>21.2 months (95% CI 13.2-25.8)</td>
</tr>
<tr>
<td>Median PFS</td>
<td>7.6 months (95% CI 6.7-8.6)</td>
</tr>
<tr>
<td>mRECIST PR; DCR*</td>
<td>29 (40%); 70 (97%)</td>
</tr>
</tbody>
</table>

* Investigator-assessed partial response & disease control rate (PR + stable disease)

STELLAR safety results

- Thirty-seven patients (46%) had TTFields-related skin toxicity
- Four patients (5%) had Grade 3 skin toxicity (rash or skin irritation)
 - Resolved after treatment with topical corticosteroids or a short treatment break
- No serious adverse event was related to TTFields

Median compliance with TTFields was 68% (16.3 hours/day)

Cerasoli, G.L. International Association for the Study of Lung Cancer. MA 12.06 – STELLAR Final Results of a Phase 2 Trial of TTFields with Chemotherapy for First-Line Treatment of Malignant Pleural Mesothelioma. Mini Oral Abstract Session: Mesothelioma Surgery and Novel Targets for Prognosis and Therapy. Tuesday, Sept. 25, 2018, 10:30 p.m. ET.
ongoing METIS trial in brain metastases

A pivotal, open-label, randomized study of radiosurgery with or without Tumor Treating Fields (150 kHz) for 1-10 brain metastases from non-small cell lung cancer

- 270 patients randomized 1:1
- Tumor Treating Fields until second cerebral progression
- Primary endpoint – time to first intracranial progression
- Secondary endpoints include time to neurocognitive failure, overall survival, radiological response

completed pilot EF-15 trial in lung cancer

A pilot, non-randomized, open-label study of Tumor Treating Fields (150 kHz) concomitant with pemetrexed in pretreated patients with locally advanced non-small cell lung cancer

- 42 patients with comparison to historical controls
- Data published in *Lung Cancer* in September 2013

Efficacy Endpoints

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>TTFIELDS WITH PEMETREXED<sup>1</sup></th>
<th>PEMETREXED-ALONE HISTORICAL CONTROL<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median in-field PFS</td>
<td>6.5 months</td>
<td>n/a</td>
</tr>
<tr>
<td>Median PFS</td>
<td>5 months</td>
<td>2.9 months</td>
</tr>
<tr>
<td>Median OS</td>
<td>13.8 months</td>
<td>8.3 months</td>
</tr>
<tr>
<td>One-year survival rate</td>
<td>57%</td>
<td>30%</td>
</tr>
<tr>
<td>Partial response rate</td>
<td>15%</td>
<td>9%</td>
</tr>
</tbody>
</table>

ongoing LUNAR trial in non-small cell lung cancer

A pivotal, randomized, open-label study of Tumor Treating Fields (150 kHz) concurrent with standard of care therapies for treatment of stage 4 non-small cell lung cancer following platinum failure

- 540 patients randomized 1:1
- Primary endpoint – overall survival (OS)
- Secondary endpoints include:
 - OS of TTFields + docetaxel vs docetaxel alone
 - OS of TTFields + immune checkpoint inhibitors vs immune checkpoint inhibitors alone
 - OS of TTFields + docetaxel vs immune checkpoint inhibitors alone

completed pilot PANOVA trial in pancreatic cancer

A pilot, double arm, non-randomized, open-label study of Tumor Treating Fields (150 kHz) concomitant with gemcitabine and nab-paclitaxel for frontline treatment of pancreatic adenocarcinoma

- 40 patients (2 cohorts of 20 patients) with comparison to historical controls
- Data published in *Pancreatology* in October 2018

Efficacy Endpoints for Second Cohort

<table>
<thead>
<tr>
<th>Efficacy Endpoint</th>
<th>TTFields with Nab-Paclitaxel + Gemcitabine<sup>1</sup></th>
<th>Nab-Paclitaxel + Gemcitabine<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>12.7 months</td>
<td>5.5 months</td>
</tr>
<tr>
<td>Median OS</td>
<td>Not yet reached</td>
<td>8.5 months</td>
</tr>
<tr>
<td>One-year survival rate</td>
<td>72%</td>
<td>35%</td>
</tr>
<tr>
<td>Partial response rate (PR)</td>
<td>40%</td>
<td>23%</td>
</tr>
<tr>
<td>Clinical benefit (PR plus stable disease)</td>
<td>87%</td>
<td>50%</td>
</tr>
</tbody>
</table>

ongoing PANOVA-3 trial in pancreatic cancer

A pivotal, randomized open-label study of Tumor Treating Fields (150 kHz) concomitant with gemcitabine and nab-paclitaxel for front-line treatment of locally-advanced pancreatic adenocarcinoma

- 556 patients randomized 1:1
- Tumor Treating Fields until local disease progression in the abdomen
- Primary endpoint – overall survival (OS)
- Secondary endpoints include PFS, objective response rate, rate of resectability, quality of life

completed pilot INNOVATE trial in ovarian cancer

A pilot, non-randomized, open-label study of Tumor Treating Fields (200 kHz) concomitant with weekly paclitaxel in patients with recurrent ovarian cancer

- 30 patients with comparison to historical controls
- Data published in *Gynecologic Oncology* in July 2018

Efficacy Endpoints

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>TTFIELDS WITH PACLITAXEL<sup>1</sup></th>
<th>PACLITAXEL ALONE HISTORICAL RESULTS<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>8.9 months</td>
<td>3.9<sup>†</sup> months</td>
</tr>
<tr>
<td>Median OS</td>
<td>Not yet reached</td>
<td>13.2 months</td>
</tr>
<tr>
<td>One-year survival rate</td>
<td>61%</td>
<td>n/a</td>
</tr>
</tbody>
</table>

ongoing INNOVATE-3 trial in ovarian cancer

A pivotal, randomized open-label study of Tumor Treating Fields (200 kHz) concomitant with weekly paclitaxel for the treatment of platinum-resistant ovarian cancer

- 540 patients randomized 1:1
- Tumor Treating Fields until progression outside the abdomen/pelvis
- Primary endpoint – overall survival (OS)
- Secondary endpoints include PFS and objective response rate

ongoing HEPANOVA trial in liver cancer

A phase 2 pilot trial of Tumor Treating Fields (150 kHz) concomitant with sorafenib for advanced hepatocellular carcinoma

- 25 patients
- Tumor Treating Fields until progressive disease per RECIST in the liver
- Primary endpoint – overall radiological response rate
- Secondary endpoints include in-field control rate, PFS at 12 months and OS at 1 year

screening and baseline evaluation
TTFields + daily sorafenib
CT/MRI scan q12w until progression
survival follow up
additional presentation slides
like gravity and magnetic fields, electric fields exert forces at a distance
electric fields exert forces on charged tubulin proteins, disrupting mitosis
higher field intensity at the tumor bed predicted survival benefit

overall survival by field intensity delivered

- Higher intensities*: 25 months (n=110, p=0.01)
- Lower intensities*: 21 months (n=207)
- TMZ alone: 16 months (n=229)

median overall survival, months

TMZ, temozolomide; CI, confidence interval
*Higher intensities defined as field strengths greater than or equal to 1.0 V/cm. Lower intensities defined as field strengths less than 1.0 V/cm.
1 95% CI 22–37; 67 events, 43 censored
2 95% CI 19–24; 162 events, 45 censored

Post-hoc analysis of EF-14 treatment arm patient data. Of the 466 EF-14 treatment arm patients, the analysis reviewed 317 patients with treatment duration >2 months and sufficient MRI quality.

\[\text{dose} = \text{time on therapy} \times \text{intensity} \]

Overall Survival by Dose in Newly Diagnosed GBM

<table>
<thead>
<tr>
<th>Dose Description</th>
<th>Median Overall Survival, Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher intensities* and 20-24 hours/day</td>
<td>37 months (n=36)</td>
</tr>
<tr>
<td>Higher intensities* and 18-20 hours/day</td>
<td>25 months (n=44)</td>
</tr>
<tr>
<td>Higher intensities* and <18 hours/day</td>
<td>23 months (n=42)</td>
</tr>
<tr>
<td>Lower intensities*</td>
<td>21 months (n=195)</td>
</tr>
<tr>
<td>TMZ alone</td>
<td>16 months (n=229)</td>
</tr>
</tbody>
</table>

Note:
- *Higher intensities* defined as field strengths greater than or equal to 1.0 V/cm. Lower intensities defined as field strengths less than 1.0 V/cm.
- 1 95% CI 21-48; 23 events, 13 censored
- 2 95% CI 18-39; 29 events, 15 censored
- 3 95% CI 19-44; 24 events, 18 censored
- 4 95% CI 17-24; 153 events, 42 censored

Post-hoc analysis of EF-14 treatment arm patient data. Of the 466 EF-14 treatment arm patients, the analysis reviewed 317 patients with treatment duration >2 months and sufficient MRI quality.
