forward-looking statements

This presentation contains certain forward-looking statements with respect to the business of Novocure and certain of its plans and objectives, including with respect to the development and commercialization of its lead product candidate, Optune, for a number of oncology indications. These forward-looking statements can be identified in this presentation by the fact that they do not relate only to historical or current facts. Forward-looking statements often use words "expect", "intend", "anticipate", "plan", "may", "should", "would", "could" or other words of similar meaning. These statements are based on assumptions and assessments made by Novocure in light of industry experience and perception of historical trends, current conditions, expected future developments and other appropriate factors. By their nature, forward-looking statements involve risk and uncertainty, and Novocure's performance and financial results could differ materially from those expressed or implied in these forward-looking statements due to general financial, economic, regulatory and political conditions as well as more specific risks and uncertainties facing Novocure such as those set forth in its Annual Report on Form 10-K filed on February 22, 2018, or in subsequent quarterly filings with the U.S. Securities and Exchange Commission. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in this presentation. Novocure assumes no obligation to update or correct the information contained in this presentation, whether as a result of new information, future events or otherwise, except to the extent legally required.

The statements contained in this presentation are made as at the date of this presentation, unless some other time is specified in relation to them, and service of this presentation shall not give rise to any implication that there has been no change in the facts set out in this presentation since such date. Nothing contained in this presentation shall be deemed to be a forecast, projection or estimate of the future financial performance of Novocure, except where expressly stated.

As of the date of this presentation, Optune is only FDA-approved for the treatment of adults with supratentorial glioblastoma, or GBM, and its approval for other indications is not certain. Novocure can provide no assurances regarding market acceptance of Optune or its successful commercialization, and can provide no assurances regarding the company’s results of operations or financial condition in the future. This presentation is for informational purposes only and may not be relied upon in connection with the purchase or sale of any security.
Optune® indications for use and important safety information

INDICATIONS
• Optune is intended as a treatment for adult patients (22 years of age or older) with histologically-confirmed glioblastoma multiforme (GBM).
• Optune with temozolomide is indicated for the treatment of adult patients with newly diagnosed, supratentorial glioblastoma following maximal debulking surgery, and completion of radiation therapy together with concomitant standard of care chemotherapy.
• For the treatment of recurrent GBM, Optune is indicated following histologically- or radiologically-confirmed recurrence in the supratentorial region of the brain after receiving chemotherapy. The device is intended to be used as a monotherapy, and is intended as an alternative to standard medical therapy for GBM after surgical and radiation options have been exhausted.

CONTRAINDICATIONS
• Do not use Optune in patients with an active implanted medical device, a skull defect (such as, missing bone with no replacement), or bullet fragments. Use of Optune together with implanted electronic devices has not been tested and may theoretically lead to malfunctioning of the implanted device. Use of Optune together with skull defects or bullet fragments has not been tested and may possibly lead to tissue damage or render Optune ineffective.
• Do not use Optune in patients that are known to be sensitive to conductive hydrogels. In this case, skin contact with the gel used with Optune may commonly cause increased redness and itching, and rarely may even lead to severe allergic reactions such as shock and respiratory failure.
Optune® indications for use and important safety information

WARNINGS AND PRECAUTIONS

• Optune can only be prescribed by a healthcare provider that has completed the required certification training provided by Novocure (the device manufacturer).

• Do not prescribe Optune for patients that are pregnant, you think might be pregnant or are trying to get pregnant, as the safety and effectiveness of Optune in these populations have not been established.

• The most common (≥10%) adverse events involving Optune in combination with temozolomide were thrombocytopenia, nausea, constipation, vomiting, fatigue, medical device site reaction, headache, convulsions, and depression.

• The most common (≥10%) adverse events seen with Optune monotherapy were medical device site reaction and headache.

• The following adverse reactions were considered related to Optune when used as monotherapy: medical device site reaction, headache, malaise, muscle twitching, fall and skin ulcer.

• Use of Optune in patients with an inactive implanted medical device in the brain has not been studied for safety and effectiveness, and use of Optune in these patients could lead to tissue damage or lower the chance of Optune being effective.

• If the patient has an underlying serious skin condition on the scalp, evaluate whether this may prevent or temporarily interfere with Optune treatment.
ESTABLISHED COMMERCIAL BUSINESS

- 15 consecutive quarters of patient growth
- $232 million trailing twelve month revenues
- Operating income generated by GBM contributing to investments in R&D

SIGNIFICANT UPSIDE POTENTIAL

- HDE application filed with FDA for MPM
- Ongoing phase 3 pivotal trials in brain mets, NSCLC and pancreatic cancer

Information above as of September 30, 2018
we can leverage physics to fight cancer

AN ELECTRIC FIELD EXERTS FORCES ON CHARGED OBJECTS

TUMOR TREATING FIELDS USES ELECTRIC FIELDS TO DISRUPT CELL DIVISION

MISALIGNED TUBULINS INTERFERE WITH FORMATION OF MITOTIC SPINDLE

TUMOR TREATING FIELDS DESCRIBES ELECTRIC FIELDS THAT ALTERNATE 100,000 TO 300,000 TIMES PER SECOND TO TARGET CANCER CELLS

ALTERNATING ELECTRIC FIELDS DISRUPT CANCER CELL DIVISION

CANCER CELL DEATH
Tumor Treating Fields provides multiple opportunities in solid tumor cancers

<table>
<thead>
<tr>
<th>CANCERS OF THE CENTRAL NERVOUS SYSTEM</th>
<th>PRE-CLINICAL EVIDENCE</th>
<th>FIRST IN HUMAN EVIDENCE</th>
<th>CLINICAL EVIDENCE</th>
<th>FDA APPROVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glioblastoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain metastases from non-small cell lung cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain metastases from breast cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain metastases from melanoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ependymoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gliosarcoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medulloblastoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meningioma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANCERS OF THE CHEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesothelioma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small cell lung cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANCERS OF THE ABDOMEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervical cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal cell adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary transitional cell carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignant melanoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the Optune® system

- Wearable, portable field generator can be carried with you to generate Tumor Treating Fields as you go about your day
- Sterile, single-use transducer arrays are connected to electric field generator to deliver therapy

Steve is an Optune user
in newly diagnosed GBM, Optune proven to extend survival and maintain quality of life*

• New marketing campaign launched in the United States in August 2018
• Highlights unprecedented long-term survival and quality of life
• Connects prospective patients in the U.S. with Optune users

* Quality of life measured up to one year. Patient-reported data via survey covered 5 daily-functioning domains (Physical, Role, Social, Emotional, and Cognitive).
In newly diagnosed GBM,

Optune plus temozolomide provided an unprecedented long-term survival benefit

• Significantly better OS at the 2- and 5-year landmark analyses compared to TMZ alone
• Median OS in the ITT population was significantly extended – by nearly 5 months (p<0.001)

Overall Survival (5-year survival analysis)

- Optune + TMZ (n=466)
- TMZ alone (n=226)

Median OS from randomization (months)	20.9	16.0
Log-rank P-value	<0.001	
HR (95% CI)	0.63 (0.53-0.76)	
Median OS from diagnosis (months)	24.5	19.8

GBM: glioblastoma; TMZ: temozolomide; OS: overall survival; ITT: intent-to-treat

In newly diagnosed GBM, more time on Optune predicted increased significant survival benefit. Based on amount of time Optune was turned on and providing therapy over the course of a month. This data reflects the average patient usage of Optune for the first 6 months of treatment (months 1-6).

<table>
<thead>
<tr>
<th>Percentage of Monthly Time on Optune</th>
<th>Median OS, months</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%-100% (n=43) 22-24 hours/day</td>
<td>25 months</td>
</tr>
<tr>
<td>70%-90% (n=257) 17-22 hours/day</td>
<td>22 months</td>
</tr>
<tr>
<td>60%-70% (n=46) 14-17 hours/day</td>
<td>20 months</td>
</tr>
<tr>
<td>50%-60% (n=42) 12-14 hours/day</td>
<td>18 months</td>
</tr>
<tr>
<td>0% (n=229) TMZ alone</td>
<td>16 months</td>
</tr>
</tbody>
</table>

86% of patients received a survival benefit from Optune because they used it more than half the time (n=388/450) based on monthly usage.

TMZ, temozolomide
commercial operations in six markets across three regions

UNITED STATES
- Population: 9,300 eligible patients
- Estimated penetration: 28%

EMEA†
- Population: 3,450 eligible patients
- Estimated penetration: 24%

JAPAN
- Population: 1,100 eligible patients
- Estimated penetration: 13%

Information above as of September 30, 2018
†Considers currently active markets: Germany, Switzerland, Austria and Israel
continued growth in active patients

active patients at period end

15 consecutive quarters of active patient growth since initial presentation of EF-14 data

9,700+ patients treated to date globally
direct-to-patient distribution model†

- **Physician Sends Prescription Order to Novocure**
- **Physician or Novocure Uses Novotal System to Create Array Placement Map**
- **Novocure Delivers Optune and Trains Patient/Family**
- **Novocure Provides 24/7 Tech Support and Supplies Transducer Arrays**
- **Novocure Bills Third-Party Payer and Patient‡ for Each Month of Therapy**
- **Physician Sees Patient for Regular Compliance Monitoring and Follow-Up Appointments**

† Novocure distributes product through hospitals in Japan.
‡ Subject to patient assistance programs.
record quarterly revenue of $64.8 million

global net revenues (USD in thousands)

YEAR-OVER-YEAR REVENUE GROWTH Q3 2018 VS. Q3 2017

$232 MILLION TRAILING TWELVE MONTH REVENUES
multiple levers for revenue growth in GBM

OPPORTUNITY TO INCREASE GBM PENETRATION
- Category 1 NCCN guidelines® recommendation
- Growth in prescriptions for newly diagnosed GBM

OPPORTUNITY TO INCREASE NET REVENUES REALIZATION
- Step-function improvements with national reimbursements, e.g. Medicare
- Incremental improvements with ongoing market access initiatives

OPPORTUNITY TO EXPAND INTO ADDITIONAL MARKETS OVER TIME
- Current commercial efforts focused on six markets
- Ability to leverage established organization across three regions
advancing clinical pipeline

<table>
<thead>
<tr>
<th></th>
<th>PHASE II PILOT</th>
<th>PHASE III PILOT</th>
<th>IN REGISTRATION</th>
<th>ANTICIPATED MILESTONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesothelioma</td>
<td></td>
<td></td>
<td></td>
<td>FDA approval for malignant pleural mesothelioma</td>
</tr>
<tr>
<td>Brain metastases</td>
<td></td>
<td></td>
<td></td>
<td>METIS trial last patient in 2019 with final data collection in 2020</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td></td>
<td></td>
<td></td>
<td>LUNAR trial last patient in 2019 with final data collection in 2021</td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td></td>
<td></td>
<td></td>
<td>PANOVA 3 trial last patient in 2020 with final data collection in 2022</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td></td>
<td></td>
<td></td>
<td>phase three pivotal trial open in 2H 2018</td>
</tr>
<tr>
<td>Liver cancer</td>
<td></td>
<td></td>
<td></td>
<td>HEPANOVA trial first patient in 2H 2018</td>
</tr>
</tbody>
</table>

- **Trial ongoing**: Trial ongoing
- **Trial complete**: Trial complete
addressing large market segments with significant unmet medical needs

BRAIN METASTASES
- 258,000 cases diagnosed annually in target markets
- 7-13 months median overall survival

NON-SMALL CELL LUNG CANCER
- 659,000 cases diagnosed annually in target markets
- 13.4 months median overall survival

Pancreatic Cancer
- 223,000 cases diagnosed annually in target markets
- 8.5 months median overall survival

Ovarian Cancer
- 100,000 cases diagnosed annually in target markets
- 13-14 months median overall survival after recurrence

Mesothelioma
- 13,000 cases diagnosed annually in target markets
- 12.1 months median overall survival

robust intellectual property portfolio

INTELLECTUAL PROPERTY

- As of December 31, 2017 over 140 issued patents globally with expected expiration dates as late as 2035
- Numerous patents pending worldwide

LAYERED PATENT STRATEGY

- Hold fundamental IP for the use of alternating electric fields in oncology
- Platform technology, tools and multiple applications covered, including mechanism of action, use of alternating electric fields in combination with chemotherapy and delivery of alternating electric fields through transducer arrays
- Continue to file patent applications globally as we enhance our technology and applications

PMA PATHWAY A BARRIER TO COMPETITION

- Optune® classified as class III, life-sustaining device requiring PMA
- Anticipate any competitor device would require clinical trials and extensive data
q3 2018 selected financial highlights

<table>
<thead>
<tr>
<th>U.S. DOLLARS IN THOUSANDS</th>
<th>Q3 2018</th>
<th>Q3 2017</th>
<th>% CHANGE</th>
<th>Q3 2018 YTD</th>
<th>Q3 2017 YTD</th>
<th>% CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net revenues</td>
<td>$ 64,756</td>
<td>$ 50,109</td>
<td>29%</td>
<td>$ 178,395</td>
<td>$ 123,365</td>
<td>45%</td>
</tr>
<tr>
<td>Cost of revenues</td>
<td>18,949</td>
<td>15,153</td>
<td>25%</td>
<td>57,020</td>
<td>39,969</td>
<td>43%</td>
</tr>
<tr>
<td>Gross profit</td>
<td>45,807</td>
<td>34,956</td>
<td>31%</td>
<td>121,375</td>
<td>83,396</td>
<td>46%</td>
</tr>
<tr>
<td>Research, development and clinical trials</td>
<td>13,074</td>
<td>9,273</td>
<td>41%</td>
<td>35,540</td>
<td>28,055</td>
<td>27%</td>
</tr>
<tr>
<td>Sales and marketing</td>
<td>19,124</td>
<td>16,387</td>
<td>17%</td>
<td>56,455</td>
<td>47,503</td>
<td>19%</td>
</tr>
<tr>
<td>General and administrative</td>
<td>18,855</td>
<td>15,215</td>
<td>24%</td>
<td>54,388</td>
<td>42,660</td>
<td>27%</td>
</tr>
<tr>
<td>Total operating costs and expenses</td>
<td>51,053</td>
<td>40,875</td>
<td>25%</td>
<td>146,383</td>
<td>118,218</td>
<td>24%</td>
</tr>
<tr>
<td>Operating income (loss)</td>
<td>(5,246)</td>
<td>(5,919)</td>
<td>11%</td>
<td>(25,008)</td>
<td>(34,822)</td>
<td>28%</td>
</tr>
<tr>
<td>Financial expenses, net</td>
<td>2,397</td>
<td>2,156</td>
<td>11%</td>
<td>10,110</td>
<td>6,785</td>
<td>49%</td>
</tr>
<tr>
<td>Income (loss) before income taxes</td>
<td>(7,643)</td>
<td>(8,075)</td>
<td>5%</td>
<td>(35,118)</td>
<td>(41,607)</td>
<td>16%</td>
</tr>
<tr>
<td>Income taxes</td>
<td>4,051</td>
<td>3,423</td>
<td>18%</td>
<td>12,810</td>
<td>9,110</td>
<td>41%</td>
</tr>
<tr>
<td>Net income (loss)</td>
<td>$ (11,694)</td>
<td>$ (11,498)</td>
<td>-2%</td>
<td>$ (47,928)</td>
<td>$ (50,717)</td>
<td>5%</td>
</tr>
<tr>
<td>Cash and cash equivalents</td>
<td>$ 122,959</td>
<td>$ 82,104</td>
<td></td>
<td>$ 122,959</td>
<td>$ 82,104</td>
<td></td>
</tr>
<tr>
<td>Short-term investments</td>
<td>104,743</td>
<td>104,453</td>
<td></td>
<td>104,743</td>
<td>104,453</td>
<td></td>
</tr>
</tbody>
</table>
novocure™
patientforward
clinical appendix
Tumor Treating Fields is frequency-tuned to cell size to maximize effects on mitosis

<table>
<thead>
<tr>
<th>Tissue Type</th>
<th>Frequency (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal intestine</td>
<td>~50 kHz</td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>150 kHz</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td>150 kHz</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>200 kHz</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>200 kHz</td>
</tr>
</tbody>
</table>

Effects on cells are frequency specific and inversely related to cell size.
physical, observable mechanism of action

CONTROL

TUMOR TREATING FIELDS

Blue staining is DAPI, highlighting DNA
Red staining is for PH3, highlighting DNA binding proteins
Green staining is for tubulin, highlighting the mitotic spindle
Novocure data on file
Tumor Treating Fields induced severe spindle damage in cancer cell lines

A549 cells in lung tissue were treated with Tumor Treating Fields for 24 hours.

Tubulin fluorescence images were inverted and pseudocolored so that increasing fluorescence intensity is indicated from blue to red (scale bar represent arbitrary units). Dashed lines define the region between the two spindle poles (white) and overall tubulin fluorescence within the cell (Red).

Tumor Treating Fields resulted in abnormal chromosomal segregation

A2780 cells were treated with TTFields for 96 hours. Chromosome number was evaluated every 24 hours. Horizontal bars indicate median values (p<0.0001; Brown-Forsythe test).

Spectral karyotyping of A2780 cells showing numerical aberrations following TTFields treatment.

Tumor Treating Fields may offer additive or synergistic benefits in combination with chemotherapy

Combination of Tumor Treating Fields and paclitaxel chemotherapy

Ovarian Cancer Cells were treated for 72 hr with paclitaxel alone (1–100 nM) and in combination with TTFields (2.7 V/cm pk-pk, 200 kHz). Dose–response plots of A2780, OVCAR-3 and Caov-3 cells. CI: combination index.

Tumor Treating Fields interfered with DNA damage response

TTF+IR triggers multinucleation and mitotic abnormalities in glioblastoma cells. Cells were exposed to 24 h of TTF, 5 Gy of γ-rays or 5 Gy of γ-rays followed by 24 h of TTF, indicated as the TTF, IR and TTF+IR treatments, respectively.

Immunofluorescence microscopy image of cells stained for α-tubulin (green) and DAPI. The histograms summarize the results of three independent experiments (with at least 100 cells counted in each experiment in each column). The values represent the means of three experiments ± SD; *p < 0.05, **p < 0.001. Cells were scored for the presence (abnormal) or absence (normal) of chromosome alignment and se.

Tumor Treating Fields may inhibit metastases and activate an immune response

Exemplary photos of surface lung metastases in Tumor Treating Fields treated versus sham control rabbits.

Treatment was initiated on day 12 from implantation of the kidney tumor. The average total number (±SD) of surface metastases in control versus treated rabbits

Discrete intra-tumoral infiltration of CD45 positive T cells in control tumors and abundant intra tumoral CD45 positive T cells in Tumor Treating Fields treated tumors. Scale bar 100 lm

transducer array placement

- abdominal array placement
- torso array placement
- pelvic array placement
completed pilot STELLAR trial in mesothelioma

A pilot, non-randomized, open-label study of Tumor Treating Fields (150 kHz) concomitant with pemetrexed and cisplatin or carboplatin in patients with previously untreated pleural mesothelioma

- 80 patients with comparison to historical controls
- Data presented at the 19th World Conference on Lung Cancer in Toronto on September 25, 2018
- HDE application submitted to the FDA in October 2018

<table>
<thead>
<tr>
<th>EFFICACY ENDPOINTS</th>
<th>TTFIELDS WITH PEMETREXED AND CISPLATIN OR CARBOPLATIN</th>
<th>PEMETREXED AND CISPLATIN ALONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>7.6 months</td>
<td>5.7 months</td>
</tr>
<tr>
<td>Median OS</td>
<td>18.2 months</td>
<td>12.1 months</td>
</tr>
</tbody>
</table>

1. Cerasoli, G.L. International Association for the Study of Lung Cancer. MA 12.06 – STELLAR Final Results of a Phase 2 Trial of TTFIELDS with Chemotherapy for First-Line Treatment of Malignant Pleural Mesothelioma. Mini Oral Abstract Session: Mesothelioma Surgery and Novel Targets for Prognosis and Therapy. Tuesday, Sept. 25, 2018, 10:30 p.m. ET.

STELLAR study design & patient characteristics

Unresectable malignant pleural mesothelioma N=80

- Follow-up for survival
 - Follow-up q3w
 - CT scan q6w: Modified RECIST

Primary Endpoint: OS
Secondary Endpoints: ORR, PFS, Safety

Key Inclusion Criteria:
- Pathological evidence of unresectable MPM
- At least one measurable lesion (mRECIST)
- ECOG PS score 0-1

Key Exclusion Criteria:
- Candidate for curative treatment
- Significant comorbidities
- Implanted electronic medical devices

Median age, years (range)
- Male: 67 (84%)
- ECOG PS: 0
- Epithelioid histology 53 (66%)
- Sarcomatoid/Biphasic 21 (26%)
- Unspecified histology 6 (8%)

- TTFields cycles: Median (range): 8.0 (2–41)
- Chemotherapy cycles: Median (range): 6.0 (1–7)
- Carboplatin: 50 patients (63%)
STELLAR efficacy results: primary endpoint met

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS (all pts)</td>
<td>18.2 months (95% CI 12.1-25.8)</td>
</tr>
<tr>
<td>1-year OS (all pts)</td>
<td>62.2% (95% CI 50.3%–72.0%)</td>
</tr>
<tr>
<td>Median OS (epithelioid pts only)</td>
<td>21.2 months (95% CI 13.2-25.8)</td>
</tr>
<tr>
<td>Median PFS</td>
<td>7.6 months (95% CI 6.7-8.6)</td>
</tr>
<tr>
<td>mRECIST PR; DCR* [best response in 72 patients]</td>
<td>29 (40%); 70 (97%)</td>
</tr>
</tbody>
</table>

* Investigator-assessed partial response & disease control rate (PR + stable disease)

The threshold for significant extension in OS compared to historical control was met (HR 0.663; 95% CI 0.558-0.826; p=0.043).

STELLAR safety results

<table>
<thead>
<tr>
<th>Adverse event reported in >1 patient</th>
<th>Grade ≥3 AE n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with ≥1 AE, n(%)</td>
<td>21 (26)</td>
</tr>
<tr>
<td>Hematologic Disorders</td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>6 (8)</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>6 (8)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Non-hematologic Disorders</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Skin-related toxicity</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>2 (3)</td>
</tr>
</tbody>
</table>

- Thirty-seven patients (46%) had TTFields-related skin toxicity
- Four patients (5%) had Grade 3 skin toxicity (rash or skin irritation)
 - Resolved after treatment with topical corticosteroids or a short treatment break
- No serious adverse event was related to TTFields

Median compliance with TTFields was 68% (16.3 hours/day)

Cerasoli, G.L. International Association for the Study of Lung Cancer. MA 12.06 – STELLAR Final Results of a Phase 2 Trial of TTFields with Chemotherapy for First-Line Treatment of Malignant Pleural Mesothelioma. Mini Oral Abstract Session: Mesothelioma Surgery and Novel Targets for Prognosis and Therapy. Tuesday, Sept. 25, 2018, 10:30 p.m. ET.
current status of HDE application and anticipated preparation for commercial launch

Today
- Pre-submission meeting held with FDA in Q3 2018
- HDE application submitted in late October 2018
- 75 day review clock to FDA decision letter

2019
- Organization ready at FDA approval:
 - Promotion initially targeted to centers of excellence, largely leveraging existing sales force
 - Initiate process towards payer coverage and contracting
 - Engagement with advocacy groups

US regulatory submission for second generation torso system
EU regulatory package prepared

2020 and beyond
- Full commercial launch with:
 - Approval of second generation torso system
 - Established commercial reimbursement
ongoing METIS trial in brain metastases

A pivotal, open-label, randomized study of radiosurgery with or without Tumor Treating Fields (150 kHz) for 1-10 brain metastases from non-small cell lung cancer

- 270 patients randomized 1:1
- Tumor Treating Fields until second cerebral progression
- Primary endpoint – time to first intracranial progression
- Secondary endpoints include time to neurocognitive failure, overall survival, radiological response

patientforward
ongoing LUNAR trial in non-small cell lung cancer

A pivotal, randomized, open-label study of Tumor Treating Fields (150 kHz) concurrent with standard of care therapies for treatment of stage 4 non-small cell lung cancer following platinum failure

- 540 patients randomized 1:1
- Primary endpoint – overall survival (OS)
- Secondary endpoints include:
 - OS of TTFields + docetaxel vs docetaxel alone
 - OS of TTFields + immune checkpoint inhibitors vs immune checkpoint inhibitors alone
 - OS of TTFields + docetaxel vs immune checkpoint inhibitors alone

completed pilot EF-15 trial in lung cancer

A pilot, non-randomized, open-label study of Tumor Treating Fields (150 kHz) concomitant with pemetrexed in pretreated patients with locally advanced non-small cell lung cancer

- 42 patients with comparison to historical controls
- Data published in *Lung Cancer* in September 2013

<table>
<thead>
<tr>
<th>Efficacy Endpoints</th>
<th>TTFIELDS WITH PEMETREXED(^1)</th>
<th>PEMETREXED-ALONE HISTORICAL CONTROL(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median in-field PFS</td>
<td>6.5 months</td>
<td>n/a</td>
</tr>
<tr>
<td>Median PFS</td>
<td>5 months</td>
<td>2.9 months</td>
</tr>
<tr>
<td>Median OS</td>
<td>13.8 months</td>
<td>8.3 months</td>
</tr>
<tr>
<td>One-year survival rate</td>
<td>57%</td>
<td>30%</td>
</tr>
<tr>
<td>Partial response rate</td>
<td>15%</td>
<td>9%</td>
</tr>
</tbody>
</table>

ongoing PANOV A-3 trial in pancreatic cancer

A pivotal, randomized open-label study of Tumor Treating Fields (150 kHz) concomitant with gemcitabine and nab-paclitaxel for front-line treatment of locally-advanced pancreatic adenocarcinoma

• 556 patients randomized 1:1
• Tumor Treating Fields until local disease progression in the abdomen
• Primary endpoint – overall survival (OS)
• Secondary endpoints include PFS, objective response rate, rate of resectability, quality of life

completed pilot PANOVA trial in pancreatic cancer

A pilot, double arm, non-randomized, open-label study of Tumor Treating Fields (150 kHz) concomitant with gemcitabine and nab-paclitaxel for frontline treatment of pancreatic adenocarcinoma

- 40 patients (2 cohorts of 20 patients) with comparison to historical controls
- Data published in *Pancreatology* in October 2018

<table>
<thead>
<tr>
<th>Efficacy Endpoints for Second Cohort</th>
<th>TTFields with NAB-Paclitaxel + Gemcitabine¹</th>
<th>NAB-Paclitaxel + Gemcitabine Historical Results²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>12.7 months</td>
<td>5.5 months</td>
</tr>
<tr>
<td>Median OS</td>
<td>Not yet reached</td>
<td>8.5 months</td>
</tr>
<tr>
<td>One-year survival rate</td>
<td>72%</td>
<td>35%</td>
</tr>
<tr>
<td>Partial response rate (PR)</td>
<td>40%</td>
<td>23%</td>
</tr>
<tr>
<td>Clinical benefit (PR plus stable disease)</td>
<td>87%</td>
<td>50%</td>
</tr>
</tbody>
</table>

planned INNOVATE-3 trial in ovarian cancer

A pivotal, randomized open-label study of Tumor Treating Fields (200 kHz) concomitant with weekly paclitaxel for the treatment of platinum-resistant ovarian cancer

- 540 patients randomized 1:1
- Tumor Treating Fields until progression outside the abdomen/pelvis
- Primary endpoint – overall survival (OS)
- Secondary endpoints include PFS and objective response rate

completed pilot INNOVATE trial in ovarian cancer

A pilot, non-randomized, open-label study of Tumor Treating Fields (200 kHz) concomitant with weekly paclitaxel in patients with recurrent ovarian cancer

- 30 patients with comparison to historical controls
- Data published in *Gynecologic Oncology* in July 2018

Efficacy Endpoints

<table>
<thead>
<tr>
<th></th>
<th>TTFIELDS WITH PACLITAXEL<sup>1</sup></th>
<th>PACLITAXEL ALONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>8.9 months</td>
<td>3.9<sup>†</sup> months</td>
</tr>
<tr>
<td>Median OS</td>
<td>Not yet reached</td>
<td>13.2 months</td>
</tr>
<tr>
<td>One-year survival rate</td>
<td>61%</td>
<td>n/a</td>
</tr>
</tbody>
</table>

[†]Median PFS reflects the weekly paclitaxel subgroup. Median PFS for all chemotherapies was 3.4 months.
planned HEPANOVA trial in liver cancer

A phase 2 pilot trial of Tumor Treating Fields (150 kHz) concomitant with sorafenib for advanced hepatocellular carcinoma

- 25 patients
- Tumor Treating Fields until progressive disease per RECIST in the liver
- Primary endpoint – overall radiological response rate
- Secondary endpoints include in-field control rate, PFS at 12 months and OS at 1 year

presentation slides
electric fields exert forces on electrically polarized molecules

GRAVITATIONAL FIELDS
exert force on masses

MAGNETIC FIELDS
exert force on iron & other magnets

ELECTRIC FIELDS
exert force on charges & polarized molecules

Earth

Magnet

uniform field

Charged Plates
Tumor Treating Fields uses electric fields to disrupt cell division

- **MISALIGNED TUBULINS INTERFERE WITH FORMATION OF MITOTIC SPINDLE**
- **ALTERNATING ELECTRIC FIELDS DISRUPT CANCER CELL DIVISION**
- **MISALIGNED SEPTINS INTERFERE WITH FORMATION OF CONTRACTILE RING**

Result: **CANCER CELL DEATH**
electric fields exert forces on charged proteins disrupting mitosis
the Optune® system

ELECTRIC FIELD GENERATOR
Portable Tumor Treating Fields generator

TRANSDUCER ARRAYS
Sterile, single-use transducer arrays replaced at least two times per week
patients perform activities of daily life while receiving continuous therapy
strategic partnership established with Zai Lab in Greater China in September 2018