forward-looking statements

In addition to historical facts or statements of current condition, this presentation may contain forward-looking statements. Forward-looking statements provide Novocure's current expectations or forecasts of future events. These may include statements regarding anticipated scientific progress on its research programs, clinical trial progress, development of potential products, interpretation of clinical results, prospects for regulatory approval, manufacturing development and capabilities, market prospects for its products, coverage, collections from third-party payers and other statements regarding matters that are not historical facts. You may identify some of these forward-looking statements by the use of words in the statements such as “anticipate,” “estimate,” “expect,” “project,” “intend,” “plan,” “believe” or other words and terms of similar meaning. Novocure’s performance and financial results could differ materially from those reflected in these forward-looking statements due to general financial, economic, environmental, regulatory and political conditions as well as issues arising from the COVID-19 pandemic and other more specific risks and uncertainties facing Novocure such as those set forth in its Annual Report on Form 10-K filed on February 25, 2021 with the U.S. Securities and Exchange Commission. Given these risks and uncertainties, any or all of these forward-looking statements may prove to be incorrect. Therefore, you should not rely on any such factors or forward-looking statements. Furthermore, Novocure does not intend to update publicly any forward-looking statement, except as required by law. Any forward-looking statements herein speak only as of the date hereof. The Private Securities Litigation Reform Act of 1995 permits this discussion.

The statements contained in this presentation are made as at the date of this presentation, unless some other time is specified in relation to them, and service of this presentation shall not give rise to any implication that there has been no change in the facts set out in this presentation since such date. Nothing contained in this presentation shall be deemed to be a forecast, projection or estimate of the future financial performance of Novocure, except where expressly stated.

As of the date of this presentation, Optune is FDA-approved for the treatment of adults with supratentorial glioblastoma, or GBM, and for the treatment of adults with malignant pleural mesothelioma (MPM) and its approval for other indications is not certain. Novocure can provide no assurances regarding market acceptance of Optune or Optune Lua or their successful commercialization, and can provide no assurances regarding the company’s results of operations or financial condition in the future. This presentation is for informational purposes only and may not be relied upon in connection with the purchase or sale of any security.
striving to extend survival in some of the most aggressive forms of cancer
anti-mitotic effect observed in every cancer cell line we tested

Non-small cell lung cancer cell line. Blue staining is DAPI, highlighting DNA. Red staining is for PH3, highlighting DNA binding proteins. Green staining is for tubulin, highlighting the mitotic spindle. Novocure data on file.
therapy is frequency-tuned to target dividing cancer cells

TUMOR TREATING FIELDS

50 kHz
Normal Intestine

150 kHz
Pancreatic Cancer
MPM and NSCLC

200 kHz
Ovarian Cancer
Glioblastoma

Low Frequencies
cardiac defibrillator pacemaker

Intermediate Frequencies
Tumor Treating Fields

High Frequencies
radiofrequency ablation

DNA Damage
ionizing radiation

0 Hz 10 Hz 10^1 Hz 10^2 Hz 10^3 Hz 10^4 Hz 10^5 Hz

10 kHz (1 kHz)
10^4 Hz (10 kHz)
10^5 Hz (1000 kHz)

MPM: malignant pleural mesothelioma
NSCLC: non-small cell lung cancer

© Novocure 2021
Tumor Treating Fields delivery systems FDA approved for GBM and MPM

DELIVERY SYSTEM CONSISTS OF ELECTRIC FIELD GENERATOR AND TRANSDUCER ARRAYS

CONTINUOUS USE THERAPY INTEGRATED INTO PATIENT’S DAILY LIFE

the Optune® delivery system for GBM*

the Optune Lua™ delivery system for MPM**

GBM: glioblastoma
MPM: malignant pleural mesothelioma

* Approved in the U.S. through the Premarket Authorization (PMA) Pathway
** Approved in the U.S. through the IDE pathway
direct-to-patient distribution model

- Novocure Device Support Specialist delivers device and trains patient
- Novocure provides supplies and 24/7 support for patients
- Novocure bills third-party payers and patients a single fee per month of therapy
a comprehensive growth strategy

drive commercial adoption in approved indications

advance clinical trials in new indications and combinations

deliver product innovation to optimize TTFIELDS therapy
proven to provide long-term quality survival to patients with newly diagnosed GBM

Overall survival (5-year survival analysis)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median OS from randomization (months)</th>
<th>Log-rank P-value</th>
<th>HR (95% CI)</th>
<th>Median OS from diagnosis (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optune + TMZ (n=466)</td>
<td>20.9</td>
<td><0.001</td>
<td>0.63 (0.53-0.76)</td>
<td>24.5</td>
</tr>
<tr>
<td>TMZ alone (n=229)</td>
<td>16.0</td>
<td></td>
<td></td>
<td>19.8</td>
</tr>
</tbody>
</table>

Graph

- **Probability of Survival**
 - Optune + TMZ: 43%
 - TMZ alone: 31%
 - Optune + TMZ: 13%
 - TMZ alone: 5%

- **2-year overall survival**: 31%
- **5-year overall survival**: 13%

Overall Survival (months)

- 0 6 12 18 24 30 36 42 48 54 60

5-year survival analysis was published in JAMA, December 2017

GBM: glioblastoma, TMZ: temozolomide, OS: overall survival, ITT: intent-to-treat

© Novocure 2021
more time on Optune predicted increased significant survival benefit in GBM

86% of patients received a survival benefit from Optune because they used it more than half the time (n=388/450)

Median OS by percentage of monthly time on Optune:

- **90%-100% (n=43)**: 25 months, $P<0.05$ (Optune + TMZ)
- **70%-90% (n=257)**: 22 months, $P<0.05$ (Optune + TMZ)
- **60%-70% (n=46)**: 20 months, $P<0.05$ (Optune + TMZ)
- **50%-60% (n=42)**: 18 months, $P<0.05$ (Optune + TMZ)
- **0% (n=229)**: 16 months (TMZ alone)

TMZ: temozolomide

* Based on amount of time Optune was turned on and providing therapy over the course of a month.

† This data reflects the average patient usage of Optune for the first 6 months of treatment (months 1-6).

* Approximation based on monthly usage.

† vs TMZ alone.

patients treated with Optune for newly diagnosed GBM maintained quality of life over time

QoL over 12 months2,13

\begin{itemize}
\item HCP-reported Karnofsky Performance Score
\item Patient-reported Global Health Status
\end{itemize}

\begin{tabular}{lcc}
\hline
& Optune + TMZ & TMZ alone \\
\hline
Mean KPS & & \\
Baseline & 100 & 80 \\
12 Months & 90 & 60 \\
Mean HRQoL Score & & \\
Baseline & 70 & 50 \\
12 Months & 60 & 40 \\
\hline
\end{tabular}

2 TMZ: temozolomide
FDA approved Optune Lua™ for mesothelioma*, our first torso indication, based on STELLAR results

*unresectable, locally advanced or metastatic, malignant pleural mesothelioma (MPM) to be used together with standard chemotherapy (pemetrexed and platinum-based chemotherapy)

Optune Lua™, formerly known as the NovoTTF-100L System, was approved by FDA under the Humanitarian Device Exemption (HDE) pathway in May 2019.

Caution: Federal law restricts Optune Lua™ to sale by or on the order of a physician. Humanitarian Device Authorized by Federal Law for use in the treatment of adult patients with unresectable, locally advanced or metastatic, malignant pleural mesothelioma concurrently with pemetrexed and platinum-based chemotherapy. The effectiveness of this device for this use has not been demonstrated.

STELLAR: Primary endpoint

Optune Lua and pemetrexed + cisplatin or carboplatin median OS analysis

Probability of Survival

Overall Survival (months)

Patients at risk (n) 80 74 45 20 12

18.2 months median OS

STELLAR results published in The Lancet Oncology, October 2019

© Novocure 2021
commercial strength fueling investment

net revenues (USD in millions)

<table>
<thead>
<tr>
<th>Year</th>
<th>U.S.</th>
<th>EMEA</th>
<th>Japan</th>
<th>Greater China</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2017</td>
<td>$177.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY 2018</td>
<td>$248.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY 2019</td>
<td>$351.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY 2020</td>
<td>$494.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YTD 2021</td>
<td>$401.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

r&d investment (USD in millions)

<table>
<thead>
<tr>
<th>Quarter</th>
<th>U.S.</th>
<th>EMEA</th>
<th>Japan</th>
<th>Greater China</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3 2019</td>
<td>$18.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3 2020</td>
<td>$32.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3 2021</td>
<td>$48.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Greater China includes mainland China, Hong Kong, Macau and Taiwan
q3 2021 selected financial highlights

<table>
<thead>
<tr>
<th>U.S. DOLLARS IN THOUSANDS</th>
<th>Q3 2021</th>
<th>Q3 2020</th>
<th>% CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net revenues</td>
<td>$ 133,606</td>
<td>$ 132,660</td>
<td>1%</td>
</tr>
<tr>
<td>Cost of revenues</td>
<td>30,206</td>
<td>28,395</td>
<td>6%</td>
</tr>
<tr>
<td>Gross profit</td>
<td>103,400</td>
<td>104,265</td>
<td>-1%</td>
</tr>
<tr>
<td>Research, development and clinical trials</td>
<td>48,141</td>
<td>32,818</td>
<td>47%</td>
</tr>
<tr>
<td>Sales and marketing</td>
<td>32,580</td>
<td>29,364</td>
<td>11%</td>
</tr>
<tr>
<td>General and administrative</td>
<td>31,231</td>
<td>27,061</td>
<td>15%</td>
</tr>
<tr>
<td>Total operating costs and expenses</td>
<td>111,952</td>
<td>89,243</td>
<td>25%</td>
</tr>
<tr>
<td>Operating income (loss)</td>
<td>(8,552)</td>
<td>15,022</td>
<td>-157%</td>
</tr>
<tr>
<td>Financial expenses, net</td>
<td>1,981</td>
<td>3,983</td>
<td>-50%</td>
</tr>
<tr>
<td>Income (loss) before income taxes</td>
<td>(10,533)</td>
<td>11,039</td>
<td>-</td>
</tr>
<tr>
<td>Income taxes</td>
<td>2,591</td>
<td>1,755</td>
<td>-</td>
</tr>
<tr>
<td>Net income (loss)</td>
<td>$ (13,124)</td>
<td>$ 9,284</td>
<td>-241%</td>
</tr>
<tr>
<td>Cash, cash equivalents and short-term investments</td>
<td>$ 933,785</td>
<td>$ 234,461</td>
<td>298%</td>
</tr>
</tbody>
</table>

$134m NET REVENUES GENERATED IN Q3 2021

$48m QUARTERLY INVESTMENT IN R&D IN Q3 2021
ongoing research to identify optimal use
growing evidence supports broad applicability in combination with certain other cancer therapies

TUMOR TREATING FIELDS

WITH RADIATION THERAPY

![Graph showing increased sensitivity to radiation therapy](image)

Tumor Treating Fields increased sensitivity to radiation therapy and inhibited DNA damage repair mechanisms in glioblastoma cells

WITH CERTAIN CHEMOTHERAPIES

![Graph showing in vitro dose-response effect](image)

In vitro dose-response effect of paclitaxel alone and in combination with Tumor Treating Fields in Lewis lung carcinoma cells

WITH CERTAIN IMMUNOTHERAPIES

![Graph showing tumor volume](image)

Tumor Treating Fields in combination with anti-PD-1 were therapeutically effective *in vivo* in Lewis lung carcinoma cells

1. *p < 0.05, **p < 0.001.* Kim, E.H., et al. *Oncotarget* 2016 Sep 20; 7(38): 62267–62279.
efficacy suggested in phase 2 pilot studies

NON-SMALL CELL LUNG CANCER PHASE 2 PILOT STUDY¹

13.8 months median overall survival vs. 8.3 months in pemetrexed-alone historical control

PANCREATIC CANCER PHASE 2 PILOT STUDY²

median overall survival not reached vs. 8.5 mos. in nab-paclitaxel + gemcitabine historical control

OVARIAN CANCER PHASE 2 PILOT STUDY³

median overall survival not reached vs. 13.2 mos. in paclitaxel-alone historical control

© Novocure 2021 17
TTFIELDS can elicit immunogenic cell death through induction of various forms of stress in vitro

Triggers apoptosis followed by extracellular release of HMGB1

May mediate cell surface exposure of calreticulin

Induces autophagy dependent reduction in intracellular ATP levels

HMGB1: high mobility group protein B1
ATP: adenosine triphosphate

1. * p < 0.05; ** p < 0.01; ***p < 0.001. Volkshin T, et al. Cancer Immunology, Immunotherapy. 2020;69:1199-1204
in vivo data suggest TTFields together with anti-PD-1 therapy resulted in increased tumor control

Lewis lung carcinoma

murine colon carcinoma

Voloshin T. et al., *Cancer Immunology, Immunotherapy*, 2020; 69: 1195-1204
Development Pipeline by Program

<table>
<thead>
<tr>
<th>Program</th>
<th>Phase 2</th>
<th>Phase 3/4</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Brain Cancer Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent glioblastoma</td>
<td>EF-07<sup>1</sup></td>
<td>EF-11<sup>2</sup></td>
<td>COMPLETED</td>
</tr>
<tr>
<td></td>
<td>EF-33<sup>3</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newly diagnosed glioblastoma</td>
<td>EF-07<sup>4</sup></td>
<td>EF-14<sup>5</sup></td>
<td>COMPLETED</td>
</tr>
<tr>
<td></td>
<td>TRIDENT<sup>6</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thoracic Cancer Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>STELLAR<sup>7</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain metastasis</td>
<td>METIS<sup>8</sup></td>
<td></td>
<td>ENROLLING</td>
</tr>
<tr>
<td>Non-Small Cell Lung Cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EF-15<sup>9</sup></td>
<td>LUNAR<sup>10</sup></td>
<td>COMPLETED</td>
</tr>
<tr>
<td></td>
<td>KEYNOTE B36</td>
<td></td>
<td>ENROLLING</td>
</tr>
<tr>
<td>Abdominal Cancer Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>PANOVA<sup>11</sup></td>
<td></td>
<td>COMPLETED</td>
</tr>
<tr>
<td></td>
<td>PANOVA-3<sup>12</sup></td>
<td></td>
<td>ENROLLING</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>INNOVATE<sup>13</sup></td>
<td></td>
<td>COMPLETED</td>
</tr>
<tr>
<td></td>
<td>INNOVATE-3<sup>14</sup></td>
<td></td>
<td>ENROLLING</td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>HEPANOVA<sup>15</sup></td>
<td></td>
<td>ENROLLMENT COMPLETE</td>
</tr>
<tr>
<td>Gastric adenocarcinoma</td>
<td>EF-31<sup>16</sup></td>
<td></td>
<td>ENROLLING</td>
</tr>
</tbody>
</table>

Anticipated 2021 News Flow

- LUNAR / PI
- KEYNOTE B36 / FPI

10. Trial.gov (NCT02972789).
11. Trial.gov (NCT01584449).
12. Trial.gov (NCT03371040).
15. Trial.gov (NCT03600530).
ongoing LUNAR trial in non-small cell lung cancer

LUNAR PHASE 3 PIVOTAL, OPEN-LABEL, RANDOMIZED TRIAL DESIGN

- **progression on or after platinum-based therapy**
- **screening and baseline evaluation**
- **randomization 1:1**
- **TTFFields + immune checkpoint inhibitor/docetaxel**
- **immuno checkpoint inhibitor/docetaxel**
- **CT q6w until progression**
- **three post-progression follow-up visits**
- **survival follow-up**

pembrolizumab **nivolumab** **atezolizumab**

ORIGINAL STUDY DESIGN
- 534 patients with 18 months follow-up
- Anticipated final data in 2023
- Primary endpoint: overall survival
- Designed to detect hazard ratio of 0.75 (+4 months in OS)

ADJUSTED PROTOCOL
- 276 patients with 12 months follow-up
- FDA approved recommended changes in May 2021
- Final data anticipated in 2022
- Statistical considerations remain unchanged

ongoing INNOVATE-3 trial in ovarian cancer

INNOVATE-3 PHASE 3 PIVOTAL, OPEN-LABEL, RANDOMIZED TRIAL DESIGN

- 540 patients with 18 months follow-up
- Primary endpoint: overall survival
- Designed to detect hazard ratio of 0.75 (+4 mos. in OS)
- Enrollment complete; DMC interim analysis to follow; final data anticipated in 2023

ongoing METIS trial in brain metastases

METIS PHASE 3 PIVOTAL, OPEN-LABEL, RANDOMIZED TRIAL DESIGN

- 270 patients with 12 months follow-up
- Primary endpoint: time to intracranial progression
- Designed to detect hazard ratio of 0.57 (+6 mos. in time to progression)
- Final data now anticipated in 2023

ongoing PANOVA-3 trial in pancreatic cancer

PANOVA-3 PHASE 3 PIVOTAL, OPEN-LABEL, RANDOMIZED TRIAL DESIGN

- 556 patients with 18 months follow-up
- Primary endpoint: overall survival
- Designed to detect hazard ratio of 0.75 (+5 mos. in OS)
- Last patient enrollment anticipated in 2023; final data anticipated in 2024

TRIDENT tests potential to extend time on therapy

CURRENT GBM TREATMENT LANDSCAPE

- **Debulking Surgery**
- **Radiation therapy + TMZ**
- **TMZ + TTFIELDS**

TRIDENT\(^1\) ADDS TTFIELDS CONCURRENT WITH RADIATION

- 950 patients with 24 months follow-up
- Primary endpoint: overall survival
- Designed to detect hazard ratio of <0.80 (± 5 mos. in OS)

\(^1\) clinicaltrials.gov [NCT04471844]
HEPANOV: encouraging efficacy signals despite poor prognosis and low treatment exposure

HEPANOV PHASE 2 PILOT TRIAL DESIGN

- screening and baseline evaluation
- TTFIELDS (150 kHz) + daily sorafenib
- follow-up q4w + CT/MRI scan q12w until progression
- post-progression follow-up
- survival follow-up

76% DISEASE CONTROL RATE (n=21)
9.5% OBJECTIVE RESPONSE RATE (n=21)

vs. 43% CONTROL²
vs. 4.5% CONTROL

91% DISEASE CONTROL RATE
18% OBJECTIVE RESPONSE RATE

patients that received ≥ 12 wks of TTFIELDS (n=11)

© Novocure 2021
ongoing phase 2 pilot trial in gastric cancer in Greater China in partnership with Zai Lab

Efficacy of TTFields and FOLFOX Combination Treatment

The overall effect of TTFields/FOLFOX combination treatment was significantly higher versus either treatment alone for the AGS cell line.

- * P<0.05
- ** P<0.01
- *** P<0.001

Phase 2 Pilot Trial Design Evaluating Safety and Efficacy of TTFields and XELOX Chemotherapy in Gastric Cancer

- Screening and baseline evaluation
- TTFields + XELOX chemotherapy q3w
- CT/MRI scan q9w until progression
- Survival follow-up q12w

- Enrollment complete; final data anticipated in 2022
- Designed to detect investigator-assessed objective response rate per RECIST 1.1
enrollment ongoing to test new high-intensity array concept in EF-33 clinical trial

PRECLINICAL RATIONALE

PHASE 2 PILOT TRIAL DESIGN TESTING SAFETY AND EFFICACY OF TTFIELDS DELIVERED THROUGH HIGH-INTENSITY ARRAYS IN RECURRENT GBM1

- 25 patients with 6-months follow-up
- Designed to detect hazard ratio of 0.6 (+2 mos. in PFS)
- Final data anticipated in 2022

Field distribution in head (slice view) with standard 9-disc transducer array (left) and high-intensity 14-disc transducer array (right) with normalized SAR.

Source: Novocure data on file

1.clinicaltrials.gov [NCT04492163].

© Novocure 2021 28
KEYNOTE-B36 launching with leading U.S. thoracic KOLs on scientific steering committee

PROGRESS TOWARD TRIAL LAUNCH

- FDA approved IDE application to initiate trial, conducted in collaboration with MSD*
- Steering committee to guide enrollment strategies, country distribution and timelines
- Actively evaluating patients for enrollment

PHYSICIANS FROM FOUR LEADING U.S. ACADEMIC CENTERS TO ADVISE ON PILOT STUDY

<table>
<thead>
<tr>
<th>Dr. Anne S. Tsao, M.D.</th>
<th>Dr. Corey Langer, M.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor & Section Chief, Thoracic Medical Oncology Director, Mesothelioma Program</td>
<td>Director, Thoracic Oncology Professor of Medicine</td>
</tr>
<tr>
<td>MD Anderson Cancer Center</td>
<td>University of Pennsylvania</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Rupesh Kotecha, M.D.</th>
<th>Dr. Vinicius Ermani, M.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation Oncologist Chief of Radiosurgery</td>
<td>Senior Associate Consultant</td>
</tr>
<tr>
<td>Miami Cancer Institute</td>
<td>Mayo Clinic</td>
</tr>
</tbody>
</table>

* A tradename of Merck & Co., Inc., through a subsidiary
growing oncology research interest

IST HIGHLIGHT
2-THE-TOP\(^1\) investigates tumor-specific immune activation

![Diagram showing trial design and patient timeline]

newly diagnosed GBM, WHO grade IV, maximal safe resection or biopsy
24 patients

External research further advances Tumor Treating Fields’ science in solid tumor cancers and in combination with other treatment modalities

late-stage pipeline creates potential for substantial market expansion

FUTURE POTENTIAL

- +10 ADDITIONAL CANCER TYPES WITH PRE-CLINICAL EVIDENCE
- +2 ONGOING PHASE 2 PILOT TRIALS

CURRENT PHASE 3 PIPELINE

- 20x POTENTIAL MARKET OPPORTUNITY OF TODAY
- +4 ONGOING PHASE 3 PIVOTAL TRIALS

TSee 2020 10-K for market size estimates

patientforward
expanding product development programs across three areas of focus

field generator
arrays
software applications
potential to further improve efficacy through extended time on therapy and increased intensity
product roadmap will prioritize impact on both TTFields dose and patient ease of use

MAXIMUM IMPACT

- **Device 3.0**
 Device 3.0 designed to optimize the use of electric fields to treat tumors

- **Next gen arrays**
 Next gen arrays designed to be more flexible and deliver higher intensities

- **Patient-centered software**
 Patient-centered software designed to support larger patient populations in multiple indications

TTFIELDS DOSE

EASE OF USE
increasing acceptance for TTFields across the global oncology community

TUMOR TREATING FIELDS ECOSYSTEM

NOVOCURE RESEARCH & DEVELOPMENT
- Translational research
- Clinical development
- Product innovation

EXTERNAL FUNDING
- Research grants
- inovivo projects
- inovitro projects
- Investigator-sponsored trials

PATIENT SUPPORT NETWORK
- Patients and caregivers
- Optune® and Optune Lua™ prescribers
- Patient advocacy groups
building on 20 years of innovation to pioneer an emerging modality in cancer care
together with our patients, we strive to extend survival in some of the most aggressive forms of cancer

patientforward
Optune Lua™ and Optune® indications for use and important safety information

INDICATIONS
- Optune is intended as a treatment for adult patients (22 years of age or older) with histologically-confirmed glioblastoma multiforme (GBM).
- Optune with temozolomide is indicated for the treatment of adult patients with newly diagnosed, supratentorial glioblastoma following maximal debulking surgery, and completion of radiation therapy together with concomitant standard of care chemotherapy.
- For the treatment of recurrent GBM, Optune is indicated following histologically-or radiologically-confirmed recurrence in the supratentorial region of the brain after receiving chemotherapy. The device is intended to be used as a monotherapy, and is intended as an alternative to standard medical therapy for GBM after surgical and radiation options have been exhausted.
- Optune Lua is indicated for the treatment of adult patients with unresectable, locally advanced or metastatic, malignant pleural mesothelioma (MPM) to be used concurrently with pemetrexed and platinum-based chemotherapy.

CONTRAINDICATIONS
- Do not use Optune in patients with GBM with an implanted medical device, a skull defect (such as, missing bone with no replacement), or bullet fragments. Use of Optune together with skull defects or bullet fragments has not been tested and may possibly lead to tissue damage or render Optune ineffective. Do not use Optune Lua in patients with MPM with implantable electronic medical devices, such as pacemakers or implantable automatic defibrillators, etc.
- Use of Optune for GBM or Optune Lua for MPM together with implanted electronic devices has not been tested and may lead to malfunctioning of the implanted device.
- Do not use Optune for GBM or the Optune Lua for MPM in patients known to be sensitive to conductive hydrogels. Skin contact with the gel used with Optune or Optune Lua may commonly cause increased redness and itching, and may rarely lead to severe allergic reactions such as shock and respiratory failure.
Optune Lua™ and Optune® indications for use and important safety information

WARNINGS AND PRECAUTIONS

- Optune and Optune Lua can only be prescribed by a healthcare provider that has completed the required certification training provided by Novocure®.
- The most common (>10%) adverse events involving Optune in combination with chemotherapy in patients with GBM were thrombocytopenia, nausea, constipation, vomiting, fatigue, convulsions, and depression.
- The most common (>10%) adverse events related to Optune treatment alone in patients with GBM were medical device site reaction and headache. Other less common adverse reactions were malaise, muscle twitching, and falls related to carrying the device.
- The most common (>10%) adverse events involving Optune Lua in combination with chemotherapy in patients with MPM were anemia, constipation, nausea, asthenia, chest pain, fatigue, device skin reaction, pruritus, and cough.
- Other potential adverse effects associated with the use of Optune Lua include: treatment related skin toxicity, allergic reaction to the plaster or to the gel, electrode overheating leading to pain and/or local skin burns, infections at sites of electrode contact with the skin, local warmth and tingling sensation beneath the electrodes, muscle twitching, medical site reaction and skin breakdown/skin ulcer.
- If the patient has an underlying serious skin condition on the treated area, evaluate whether this may prevent or temporarily interfere with Optune or Optune Lua treatment.
- Do not prescribe Optune or Optune Lua for patients that are pregnant, you think might be pregnant or are trying to get pregnant, as the safety and effectiveness of Optune and Optune Lua in these populations have not been established.
- Please go to Optune.com to see the Optune Instructions For Use (IFU) for complete information regarding the device’s indications, contraindications, warnings, and precautions.
- Please go to OptuneLua.com to see the Optune Lua IFU for complete information regarding the device’s indications, contraindications, warnings, and precautions.