Novocure
updated August 2019

patientforward
forward-looking statements

This presentation contains certain forward-looking statements with respect to the business of Novocure and certain of its plans and objectives, including with respect to the development and commercialization of Tumor Treating Fields delivery systems, including Optune and the NovoTTF-100L System, for a number of oncology indications. These forward-looking statements can be identified in this presentation by the fact that they do not relate only to historical or current facts. Forward-looking statements often use words “expect”, “intend”, “anticipate”, “plan”, “may”, “should”, “would”, “could” or other words of similar meaning. These statements are based on assumptions and assessments made by Novocure in light of industry experience and perception of historical trends, current conditions, expected future developments and other appropriate factors. By their nature, forward-looking statements involve risk and uncertainty, and Novocure’s performance and financial results could differ materially from those expressed or implied in these forward-looking statements due to general financial, economic, regulatory and political conditions as well as more specific risks and uncertainties facing Novocure such as those set forth in its Quarterly Report on Form 10-Q filed July 25, 2019, or in subsequent quarterly filings with the U.S. Securities and Exchange Commission. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in this presentation. Novocure assumes no obligation to update or correct the information contained in this presentation, whether as a result of new information, future events or otherwise, except to the extent legally required.

The statements contained in this presentation are made as at the date of this presentation, unless some other time is specified in relation to them, and service of this presentation shall not give rise to any implication that there has been no change in the facts set out in this presentation since such date. Nothing contained in this presentation shall be deemed to be a forecast, projection or estimate of the future financial performance of Novocure, except where expressly stated.

As of the date of this presentation, Optune is FDA-approved for the treatment of adults with supratentorial glioblastoma, or GBM, and for the treatment of adults with malignant pleural mesothelioma (MPM) and its approval for other indications is not certain. Novocure can provide no assurances regarding market acceptance of Optune or NovoTTF-100L or their successful commercialization, and can provide no assurances regarding the company’s results of operations or financial condition in the future. This presentation is for informational purposes only and may not be relied upon in connection with the purchase or sale of any security.
A global oncology company with a proprietary platform

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>145+</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDA-APPROVED INDICATIONS</td>
<td>INDICATIONS IN LATE-STAGE PIPELINE</td>
<td>ISSUED PATENTS GLOBALLY</td>
</tr>
</tbody>
</table>

| $294M | 41% | $285M |
| TRAILING 12 MONTHS NET REVENUES | REVENUE GROWTH Q2 2019 VS. Q2 2018 | CASH ON HAND AS OF JUNE 30, 2019 |
we can leverage physics to fight cancer

AN ELECTRIC FIELD EXERTS FORCES ON CHARGED OBJECTS

TUMOR TREATING FIELDS USES ELECTRIC FIELDS TO DISRUPT CELL DIVISION

TUMOR TREATING FIELDS DESCRIBES ELECTRIC FIELDS THAT ALTERNATE 100,000 TO 300,000 TIMES PER SECOND TO TARGET CANCER CELLS

MISALIGNED TUBULINS INTERFERE WITH FORMATION OF MITOTIC SPINDLE

ALTERNATING ELECTRIC FIELDS DISRUPT CANCER CELL DIVISION

CANCER CELL DEATH
mitotic spindle disruption has been observed in every cancer cell line tested

CONTROL

TUMOR TREATING FIELDS

Blue staining is DAPI, highlighting DNA. Red staining is for PH3, highlighting DNA binding proteins. Green staining is for tubulin, highlighting the mitotic spindle. Novocure data on file.
the Optune® delivery system for GBM

TRANSDUCER ARRAYS
Sterile, single-use transducer arrays replaced at least two times per week

ELECTRIC FIELD GENERATOR
Wearable and portable field generator weighing 2.7 pounds
proven to provide long-term quality survival to patients with newly diagnosed GBM
more time on Optune predicted increased significant survival benefit in GBM

86% of patients received a survival benefit from Optune because they used it more than half the time (n=388/450)

Median OS by percentage of monthly time on Optune:

- 90%-100% (n=43): 25 months (P<0.05)
- 70%-90% (n=257): 22 months (P<0.05)
- 60%-70% (n=46): 20 months (P<0.05)
- 50%-60% (n=42): 18 months (P<0.05)
- 0% (n=229): 16 months

TMZ: temozolomide

* Based on amount of time Optune was turned on and providing therapy over the course of a month. This data reflects the average patient usage of Optune for the first 6 months of treatment (months 1-6). Approximation, based on monthly usage. Ivs TMZ alone.

higher field intensity at the tumor bed predicted survival benefit

Overall survival in GBM by field intensity delivered

- **Higher intensities***: 25 months (n=1101, p=0.01)
- **Lower intensities***: 21 months (n=2072)
- **TMZ alone**: 16 months (n=229)

Median overall survival, months

Post-hoc analysis of EF-14 treatment arm patient data. Of the 466 EF-14 treatment arm patients, the analysis reviewed 317 patients with treatment duration >2 months and sufficient MRI quality.

Ballo MT, Borzoni E, Urmann N, Levy-Shahaf G, Torns SA. American Society for Radiation Oncology (ASTRO) 2018 Annual Meeting. Poster Presentation 1110 - Correlation of TTField Dose Density and Survival Outcomes in Newly Diagnosed Glioblastoma: A Numerical Simulation-Based Analysis of Patient Data from the EF-14 Randomized Trial. Poster Presentation 1110. Tuesday, Oct. 23, 2018, 4:57 p.m. CDT

dose = time on therapy x intensity

Overall survival in newly diagnosed GBM by dose

<table>
<thead>
<tr>
<th>Intensity Description</th>
<th>Median Survival (months)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher intensities* 20-24 hours/day</td>
<td>37</td>
<td>36³</td>
</tr>
<tr>
<td>Higher intensities* 18-20 hours/day</td>
<td>25</td>
<td>44²</td>
</tr>
<tr>
<td>Higher intensities* <18 hours/day</td>
<td>23</td>
<td>42³</td>
</tr>
<tr>
<td>Lower intensities*</td>
<td>21</td>
<td>195⁴</td>
</tr>
<tr>
<td>TMZ alone</td>
<td>16</td>
<td>229</td>
</tr>
</tbody>
</table>

TMZ, temozolomide; CI, confidence interval.

*Higher intensities defined as field strengths greater than or equal to 1.0 V/cm. Lower intensities defined as field strengths less than 1.0 V/cm.

¹95% CI 22-48; 23 events; 13 censored
²95% CI 18-39; 29 events; 15 censored
³95% CI 15-44; 24 events; 18 censored
⁴95% CI 17-24; 153 events; 42 censored

Post-hoc analysis of EF-14 treatment arm patient data. Of the 466 EF-14 treatment arm patients, the analysis reviewed 317 patients with treatment duration >2 months and sufficient MRI quality.

Ballo MT, Borzoni Z, Urmann N, Levy-Shahaf G, Toms SA. American Society for Radiation Oncology (ASTRO) 2018 Annual Meeting: Poster Presentation 1110 - Correlation of TTFIELDS Dose Density and Survival Outcomes in Newly Diagnosed Glioblastoma: A Numerical Simulation-Based Analysis of Patient Data from the EF-14 Randomized Trial. Poster Presentation 1110: Tuesday, Oct. 23, 2018, 4:57 p.m. CDT

STELLAR trial showed encouraging OS results for first-line treatment of patients with mesothelioma*

Primary endpoint
Median OS
(95% CI 12.1-25.8) across all patients treated with NovoTTF-100L and pemetrexed + cisplatin/carboplatin

Median OS across histologies

- Patients with epithelioid MPM (n=53) — 21.2 months
- Patients with non-epithelioid MPM (n=27) — 12.1 months

*Unresectable, locally advanced or metastatic malignant pleural mesothelioma (MPM) to be used together with standard chemotherapy (pemetrexed and platinum-based chemotherapy)
NovoTTF-100L is first FDA-approved mesothelioma treatment in more than 15 years

- Initiated a phased launch for mesothelioma shaped by our learnings from GBM
- Certifying radiation oncologists to prescribe at ~30 target treatment centers
- Educating surgeons, pulmonologists and medical oncologists to confidently recommend NovoTTF-100L

The NovoTTF-100L System was approved by FDA under the Humanitarian Device Exemption (HDE) pathway in May 2019.

Caution: Federal law restricts the NovoTTF-100L System to sale by or on the order of a physician. Humanitarian Device. Authorized by Federal Law for use in the treatment of adult patients with unresectable, locally advanced or metastatic, malignant pleural mesothelioma concurrently with pemetrexed and platinum-based chemotherapy. The effectiveness of this device for this use has not been demonstrated.
established international presence

- UNITED STATES: 1,846 active patients at period end
- EMEA: 737 active patients at period end
- JAPAN: 143 active patients at period end
- CHINA: License agreement September 2018

Information above as of June 30, 2019
continued growth in newly diagnosed GBM

Global prescriptions for patients with newly diagnosed GBM
continued growth in active patients

active GBM patients at period end

18 consecutive quarters of active patient growth since initial presentation of EF-14 data

12,000+ patients treated to date globally

© Novocure 2019
strengthening financial performance

global net revenues (USD in thousands)

$294m
TRAILING TWELVE MONTHS NET REVENUES

76%
GROSS MARGIN IN Q2 2019

$82,888
FY 2016

$177,026
FY 2017

$248,069
FY 2018

U.S. EMEA Japan Greater China

© Novocure 2019 16
advancing clinical pipeline

<table>
<thead>
<tr>
<th>PHASE II PILOT</th>
<th>PHASE III PIVOTAL</th>
<th>IN REGISTRATION</th>
<th>MILESTONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain metastases</td>
<td></td>
<td></td>
<td>Data from METIS phase 3 pivotal trial in 2021</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td></td>
<td></td>
<td>Data from LUNAR phase 3 pivotal trial in 2022 with interim analysis in H2 2020</td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td></td>
<td></td>
<td>Data from PANOVA-3 phase 3 pivotal trial in 2022 with interim analysis in 2021</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td></td>
<td></td>
<td>Data from INNOVATE-3 phase 3 pivotal trial in 2024 with interim analysis in 2022</td>
</tr>
<tr>
<td>Liver cancer</td>
<td></td>
<td></td>
<td>Data from HEPANOVA phase 2 pivotal trial in H2 2020</td>
</tr>
</tbody>
</table>

- Trial ongoing
- Trial complete
GBM and MPM represent tip of the iceberg

potential to significantly expand total addressable market

- 5,000 cases diagnosed annually in the U.S.

- Glioblastoma (GBM)
- Mesothelioma (MPM)
- Brain metastases from non-small cell lung cancer
- Non-small cell lung cancer
- Pancreatic cancer
- Ovarian cancer

Today

patientforward

~3 Years

~5 Years
pipeline in a product with single mechanism of action

<table>
<thead>
<tr>
<th>CANCERS OF THE CENTRAL NERVOUS SYSTEM</th>
<th>CANCERS OF THE CHEST</th>
<th>CANCERS OF THE ABDOMEN</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glioblastoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain metastases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ependymoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gliosarcoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medulloblastoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meningioma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesothelioma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small cell lung cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervical cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal carcinoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal cell adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary transitional cell carcinoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignant melanoma</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRE-CLINICAL EVIDENCE</th>
<th>FIRST IN HUMAN EVIDENCE</th>
<th>CLINICAL EVIDENCE</th>
<th>FDA APPROVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cash Flow Funding Investment in Clinical Pipeline

<table>
<thead>
<tr>
<th>U.S. DOLLARS IN THOUSANDS</th>
<th>Q2 2019</th>
<th>Q2 2018</th>
<th>% CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net revenues</td>
<td>$ 86,713</td>
<td>$ 61,514</td>
<td>41%</td>
</tr>
<tr>
<td>Cost of revenues</td>
<td>21,106</td>
<td>19,833</td>
<td>6%</td>
</tr>
<tr>
<td>Gross profit</td>
<td>65,607</td>
<td>41,681</td>
<td>57%</td>
</tr>
<tr>
<td>Research, development and clinical trials</td>
<td>19,454</td>
<td>11,362</td>
<td>71%</td>
</tr>
<tr>
<td>Sales and marketing</td>
<td>23,708</td>
<td>19,196</td>
<td>24%</td>
</tr>
<tr>
<td>General and administrative</td>
<td>21,249</td>
<td>18,208</td>
<td>17%</td>
</tr>
<tr>
<td>Total operating costs and expenses</td>
<td>64,411</td>
<td>48,766</td>
<td>32%</td>
</tr>
<tr>
<td>Operating income (loss)</td>
<td>1,196</td>
<td>(7,085)</td>
<td>117%</td>
</tr>
<tr>
<td>Financial expenses, net</td>
<td>1,239</td>
<td>2,860</td>
<td>-57%</td>
</tr>
<tr>
<td>Income (loss) before income taxes</td>
<td>(43)</td>
<td>(9,945)</td>
<td>100%</td>
</tr>
<tr>
<td>Income taxes</td>
<td>1,227</td>
<td>5,565</td>
<td>-78%</td>
</tr>
<tr>
<td>Net income (loss)</td>
<td>$ (1,270)</td>
<td>$ (15,510)</td>
<td>92%</td>
</tr>
<tr>
<td>Cash and cash equivalents and short-term investments</td>
<td>$ 284,584</td>
<td>$ 218,956</td>
<td>30%</td>
</tr>
</tbody>
</table>

$285m

CASH, CASH EQUIVALENTS AND SHORT-TERM INVESTMENTS AS OF JUNE 30, 2019

$9m

POSITIVE CASH FLOW FROM OPERATIONS IN Q2 2019

© Novocure 2019 20
robust intellectual property portfolio

INTELLECTUAL PROPERTY

- As of June 30, 2019 over 145 issued patents globally with expected expiration dates as late as 2037
- Numerous patents pending worldwide

LAYERED PATENT STRATEGY

- Hold fundamental IP for the use of alternating electric fields in oncology
- Platform technology, tools and multiple applications covered, including mechanism of action, use of alternating electric fields in combination with chemotherapy and delivery of alternating electric fields through transducer arrays
- Continue to file patent applications globally as we enhance our technology and applications

PMA APPROVAL PATHWAY

- TTFIELDS is classified as class III, life-sustaining device requiring PMA or HDE approval
- Anticipate any competitor device would require clinical trials
NovoTTF-100L™ System and Optune® indications for use and important safety information

INDICATIONS
• Optune is intended as a treatment for adult patients (22 years of age or older) with histologically-confirmed glioblastoma multiforme (GBM).
• Optune with temozolomide is indicated for the treatment of adult patients with newly diagnosed, supratentorial glioblastoma following maximal debulking surgery, and completion of radiation therapy together with concomitant standard of care chemotherapy.
• For the treatment of recurrent GBM, Optune is indicated following histologically-or radiologically-confirmed recurrence in the supratentorial region of the brain after receiving chemotherapy. The device is intended to be used as a monotherapy, and is intended as an alternative to standard medical therapy for GBM after surgical and radiation options have been exhausted.
• The NovoTTF-100L System is indicated for the treatment of adult patients with unresectable, locally advanced or metastatic, malignant mesothelioma (MPM) to be used concurrently with pemetrexed and platinum-based chemotherapy.

CONTRAINDICATIONS
• Do not use Optune in patients with GBM with an implanted medical device, a skull defect (such as, missing bone with no replacement), or bullet fragments. Use of Optune together with skull defects or bullet fragments has not been tested and may possibly lead to tissue damage or render Optune ineffective. Do not use the NovoTTF-100L System in patients with MPM with implantable electronic medical devices such as pacemakers or implantable automatic defibrillators, etc.
• Use of Optune for GBM or the NovoTTF-100L System for MPM together with implanted electronic devices has not been tested and may lead to malfunctioning of the implanted device.
• Do not use Optune for GBM or the NovoTTF-100L System for MPM in patients known to be sensitive to conductive hydrogels. Skin contact with the gel used with Optune and the NovoTTF-100L System may commonly cause increased redness and itching, and may rarely lead to severe allergic reactions such as shock and respiratory failure.
NovoTTF-100L™ System and Optune® indications for use and important safety information

WARNINGS AND PRECAUTIONS

- Optune and the NovoTTF-100L System can only be prescribed by a healthcare provider that has completed the required certification training provided by Novocure®.
- The most common (≥10%) adverse events involving Optune in combination with chemotherapy in patients with GBM were thrombocytopenia, nausea, constipation, vomiting, fatigue, convulsions, and depression.
- The most common (≥10%) adverse events related to Optune treatment alone in patients with GBM were medical device site reaction and headache. Other less common adverse reactions were malaise, muscle twitching, and falls related to carrying the device.
- The most common (≥10%) adverse events involving the NovoTTF-100L System in combination with chemotherapy in patients with MPM were anemia, constipation, nausea, asthenia, chest pain, fatigue, device skin reaction, pruritus, and cough.
- Other potential adverse effects associated with the use of the NovoTTF-100L System include: treatment related skin toxicity, allergic reaction to the plaster or to the gel, electrode overheating leading to pain and/or local skin burns, infections at sites of electrode contact with the skin, local warmth and tingling sensation beneath the electrodes, muscle twitching, medical site reaction and skin breakdown/skin ulcer.
- If the patient has an underlying serious skin condition on the treated area, evaluate whether this may prevent or temporarily interfere with Optune treatment and the NovoTTF-100L System.
- Do not prescribe Optune or the NovoTTF-100L System for patients that are pregnant, you think might be pregnant or are trying to get pregnant, as the safety and effectiveness of the NovoTTF-100L System and Optune in these populations have not been established.
- Please go to Optune.com to see the Optune Instructions For Use (IFU) for complete information regarding the device’s indications, contraindications, warnings, and precautions.
- Please go to Optune.com to see the NovoTTF-100L IFU for complete information regarding the device’s indications, contraindications, warnings, and precautions.
clinical appendix
two additional randomized trials in GBM planned

1. Trial to study potential benefit of initiating Optune with radiation therapy
 • Intended to support possible label expansion

2. Trial to study potential efficacy signals when Optune is combined with multiple agents
 • Intended to identify optimal combination treatments

current indication for newly diagnosed GBM:
- maximal debulking surgery
- completion of radiation therapy
- Optune with temozolomide

Optune with radiation therapy
Optune with temozolomide
Optune with temozolomide plus other therapies

randomized
Tumor Treating Fields is frequency-tuned to cell size to maximize effects on mitosis

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal intestine</td>
<td>~50 kHz</td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>150 kHz</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td>150 kHz</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>200 kHz</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>200 kHz</td>
</tr>
</tbody>
</table>
transducer array placement outside of the head

- abdominal array placement
- torso array placement
- pelvic array placement
ongoing METIS trial in brain metastases

A pivotal, open-label, randomized study of radiosurgery with or without Tumor Treating Fields (150 kHz) for 1-10 brain metastases from non-small cell lung cancer

- 270 patients randomized 1:1
- Tumor Treating Fields until second cerebral progression
- Primary endpoint – time to first intracranial progression
- Secondary endpoints include time to neurocognitive failure, overall survival, radiological response

© Novocure 2019 28
completed pilot EF-15 trial in lung cancer

A pilot, non-randomized, open-label study of Tumor Treating Fields (150 kHz) concomitant with pemetrexed in pretreated patients with locally advanced non-small cell lung cancer

- 42 patients with comparison to historical controls
- Data published in *Lung Cancer* in September 2013

Efficacy Endpoints

<table>
<thead>
<tr>
<th></th>
<th>TTFIELDS with PEMETREXED<sup>1</sup></th>
<th>PEMETREXED-ALONE HISTORICAL CONTROL<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median in-field PFS</td>
<td>6.5 months</td>
<td>n/a</td>
</tr>
<tr>
<td>Median PFS</td>
<td>5 months</td>
<td>2.9 months</td>
</tr>
<tr>
<td>Median OS</td>
<td>13.8 months</td>
<td>8.3 months</td>
</tr>
<tr>
<td>One-year survival rate</td>
<td>57%</td>
<td>30%</td>
</tr>
<tr>
<td>Partial response rate</td>
<td>15%</td>
<td>9%</td>
</tr>
</tbody>
</table>

² Created by patientforward
ongoing LUNAR trial in non-small cell lung cancer

A pivotal, randomized, open-label study of Tumor Treating Fields (150 kHz) concurrent with standard of care therapies for treatment of stage 4 non-small cell lung cancer following platinum failure

- 534 patients randomized 1:1
- Primary endpoint – overall survival (OS)
- Secondary endpoints include:
 - OS of TTFields + docetaxel vs docetaxel alone
 - OS of TTFields + immune checkpoint inhibitors vs immune checkpoint inhibitors alone
 - OS of TTFields + docetaxel vs immune checkpoint inhibitors alone

completed pilot PANOVA trial in pancreatic cancer

A pilot, double arm, non-randomized, open-label study of Tumor Treating Fields (150 kHz) concomitant with gemcitabine and nab-paclitaxel for frontline treatment of pancreatic adenocarcinoma

- 40 patients (2 cohorts of 20 patients) with comparison to historical controls
- Data published in *Pancreatology* in October 2018

<table>
<thead>
<tr>
<th>EFFICACY ENDPOINTS FOR SECOND COHORT</th>
<th>TTFIELDS WITH NAB-PACLITAXEL + GEMCITABINE¹</th>
<th>NAB-PACLITAXEL + GEMCITABINE HISTORICAL RESULTS²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>12.7 months</td>
<td>5.5 months</td>
</tr>
<tr>
<td>Median OS</td>
<td>Not yet reached</td>
<td>8.5 months</td>
</tr>
<tr>
<td>One-year survival rate</td>
<td>72%</td>
<td>35%</td>
</tr>
<tr>
<td>Partial response rate (PR)</td>
<td>40%</td>
<td>23%</td>
</tr>
<tr>
<td>Clinical benefit (PR plus stable disease)</td>
<td>87%</td>
<td>50%</td>
</tr>
</tbody>
</table>

¹ Includes patients in both cohorts. ² Includes patients in the historical arm only.

ongoing PANOVA-3 trial in pancreatic cancer

A pivotal, randomized open-label study of Tumor Treating Fields (150 kHz) concomitant with gemcitabine and nab-paclitaxel for front-line treatment of locally-advanced pancreatic adenocarcinoma

- 556 patients randomized 1:1
- Tumor Treating Fields until local disease progression in the abdomen
- Primary endpoint – overall survival (OS)
- Secondary endpoints include PFS, objective response rate, rate of resectability, quality of life

 patientforward
completed pilot INNOVATE trial in ovarian cancer

A pilot, non-randomized, open-label study of Tumor Treating Fields (200 kHz) concomitant with weekly paclitaxel in patients with recurrent ovarian cancer

- 30 patients with comparison to historical controls
- Data published in *Gynecologic Oncology* in July 2018

<table>
<thead>
<tr>
<th>EFFICACY ENDPOINTS</th>
<th>TTFIELDS WITH PACLITAXEL¹</th>
<th>PACLITAXEL ALONE HISTORICAL RESULTS²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>8.9 months</td>
<td>3.9† months</td>
</tr>
<tr>
<td>Median OS</td>
<td>Not yet reached</td>
<td>13.2 months</td>
</tr>
<tr>
<td>One-year survival rate</td>
<td>61%</td>
<td>n/a</td>
</tr>
</tbody>
</table>

ongoing INNOVATE-3 trial in ovarian cancer

A pivotal, randomized open-label study of Tumor Treating Fields (200 kHz) concomitant with weekly paclitaxel for the treatment of platinum-resistant ovarian cancer

- 540 patients randomized 1:1
- Tumor Treating Fields until progression outside the abdomen/pelvis
- Primary endpoint – overall survival (OS)
- Secondary endpoints include PFS and objective response rate

ongoing HEPANOVA trial in liver cancer

A phase 2 pilot trial of Tumor Treating Fields (150 kHz) concomitant with sorafenib for advanced hepatocellular carcinoma

- 25 patients
- Tumor Treating Fields until progressive disease per RECIST in the liver
- Primary endpoint – overall radiological response rate
- Secondary endpoints include in-field control rate, PFS at 12 months and OS at 1 year

screening and baseline evaluation ─ TTFIELDS + daily sorafenib ─ CT/MRI scan q12w until progression ─ survival follow up

patientforward
additional presentation slides
like gravity and magnetic fields, electric fields exert forces at a distance

GRAVITATIONAL FIELDS
extert force on masses

MAGNETIC FIELDS
extert force on iron & other magnets

ELECTRIC FIELDS
extert force on charges & polarized molecules
electric fields exert forces on charged tubulin proteins, disrupting mitosis

MISALIGNED TUBULINS INTERFERE WITH FORMATION OF MITOTIC SPINDLE

CANCER CELL DEATH
Novocure is working to...

- Drive Optune adoption
- Advance our pipeline
- Invest in our people and culture
- Create shareholder value

...extend survival in some of the most aggressive forms of cancer
track record of execution

YTD 2019 MILESTONES

✅ INNOVATE-3 phase 3 pivotal trial in ovarian cancer open for enrollment

✅ HDE approval for malignant pleural mesothelioma from FDA

✅ CMS decision regarding coverage request for newly diagnosed GBM

✅ Positive cash flow from operations

ANTICIPATED 2019 CATALYSTS

➕ First MPM patients to start treatment with NovoTTF-100L

➕ Zai Lab’s potential launch of Optune in China for GBM

➕ Transition to profitability
Medicare finalized coverage decision and pricing for Optune in newly diagnosed GBM

- CMS published final LCD and fee schedule amount for Optune in newly diagnosed GBM
- Coverage and pricing effective September 1
- Many proposed restrictions eliminated or revised in response to public comments
continued growth in active patients

active GBM patients at period end

OPTUNE®
Elevate Expectations

18
CONSECUTIVE QUARTERS
OF ACTIVE PATIENT GROWTH
SINCE INITIAL PRESENTATION
OF EF-14 DATA

$294m
TRAILING TWELVE MONTHS
NET REVENUES

patientforward